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Significance

 Using electroencephalography 
(EEG), we compared neural 
responses to critical in-game 
events with those from 
conventional laboratory tasks. 
Our results identified a unique 
brain response pattern, termed 
P300-CE, during gameplay, 
characterized by unusually large 
magnitudes and a lack of 
adaptation over repeated 
exposure. These findings suggest 
that high-stakes, salient in-game 
events engage neural pathways 
resistant to adaptation, 
potentially linked to reward and 
motivation systems. This work 
highlights the value of gaming 
contexts for studying sustained 
neural excitation and opens 
broad avenues for neural 
cognitive research.
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Inspired by the high engagement and sustained behavioral excitement observed in video 
game players, we hypothesized that distinct brain activity patterns occur during gam-
ing compared to a generic nongame setting. Using electroencephalography (EEG), we 
characterized the brain’s response to critical in-game events, focusing on the response 
magnitude and adaptation. Data from a large participant cohort (n = 140 for game tasks, 
n = 200 for nongame tasks) revealed a clear, definite, and consistent temporospatial 
structure of brain response patterns triggered by critical in-game events. Most notably, 
this response displayed unusually large magnitudes and a lack of adaptation over repeated 
exposures—markedly different from the observed neural responses to typical events in 
lab-based tasks (e.g., regarding novelty, unexpected events or errors). The identification 
of this distinctive response component in gaming contexts may inspire further research 
into fundamental cognitive systems, such as motivation, reward, emotional engagement, 
and their dynamic interplay in gaming environments.

P300-CE | brain excitability | brain and game | event-related potential (ERP) | EEG

 One distinct feature of games, especially video games, is that players can engage in them 
for extended periods without getting bored. This phenomenon is not common, as indi-
viduals typically grow tired of repetitive activities, an effect which is mirrored in adaptation 
of underlying neural signals. Specifically, adaptation manifests as a transition from high 
excitation and attention during early stimulus exposures to a gradually weakened response 
over repeated exposures. Such adaptation occurs extensively across different levels of the 
neural system ( 1     – 4 ). The robustness of the brain’s adaptation to a wide variety of stimuli 
and the fact that games can sustain engagement despite this tendency suggest that games 
possess unique elements or mechanics that counteract neural adaptation, maintaining 
player excitement. Evolutionarily, we would expect nonadaptation phenomenon for stimuli 
that directly signal survival threats like pain ( 5 ). However, studying such potent stimuli 
ethically in a laboratory setting is challenging: Mild stimuli often lack ecological validity, 
while inducing genuinely threatening levels is unethical. Therefore, investigating everyday 
scenarios—including gaming—that elicit strong, nonadapting neural responses across 
repeated exposures even without direct survival implications holds significant research value.

 Building on this rationale, we investigated potential neural signatures underlying the 
sustained excitability observed in players of video games (especially fast-paced game gen-
res). We first hypothesized the existence of a unique brain activity mode that is nondissi-
pative during gameplay. We further proposed that this special activity mode can be 
characterized by distinct neural response patterns to critical events during gaming. In 
engaging games—whether video games or sports—such events are strategically interspersed 
throughout the course of gameplay and are often tied to decisive outcomes (e.g., a shot 
in a ball game). These events are cognitively and emotionally salient and are expected to 
be capable of eliciting strong and sustained neural responses. For instance, in a first-person 
shooter game, even within a virtual setting, being shot at constitutes a high-stakes event 
that would consistently excite the players across instances.

 In cognitive neuroscience, characterizing the brain’s response to specific events—typi-
cally discrete stimuli—is a fundamental approach to studying brain functions. Yet, pro-
longed and potentially nonadapting neural responses across repeated exposures to discrete 
events have not been clearly documented or characterized in the literature; instead, adap-
tation has been extensively documented ( 6   – 8 ). In this exploratory study, we aimed to 
systematically characterize the brain response patterns evoked by critical in-game events 
and assess their magnitude and adaptation properties in comparison to conventional 
laboratory tasks. We recorded EEG data from 130 participants playing the game Flappy 
Bird ( 9 ) and compared the stimulus-evoked response patterns with data from five typical 
laboratory tasks ( Fig. 1 ) conducted by 200 participants under equivalent experimental 
settings and environments. We selected Flappy Bird due to its simplicity, suitability for D
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experimental manipulation, representativeness of video games, 
and the presence of clearly identifiable, salient cognitive events.        

 The results showed that the brain response patterns to critical 
events during gameplay, as measured by event-related potentials 
(ERPs), displayed distinctly different characteristics compared to 
those observed in typical laboratory tasks, particularly in activation 
magnitude and sustainability. We replicated this finding using a 
second, custom-designed game, Space Escape, with 10 new par-
ticipants. Moreover, to rule out the possibility that these effects 
were primarily caused by the highly dynamic and intense mental 
processes engaged in during video game play, we additionally 
administered a simple salient-event task—playing the Crocodile 
Dentist toy ( 10 )—to these 10 new participants, and successfully 
reproduced the same neural response components observed in the 
two video games. These results suggest that high-stakes, critical 
events, condensed into rapid, impulse-like information, may be 
capable of eliciting neural pathways that resist adaptation. These 
findings may open broad avenues for research into the brain’s 
dynamic responses to salient events, potentially involving funda-
mental neural circuits linked to reward, motivation, and 
basic drives. 

1.  Results

1.1.  Descriptive Visualization and Comparison of Brain Response 
Patterns in Laboratory Tasks and Gameplay Contexts. We begin 
by presenting the cross-trial brain response patterns elicited by 
two types of events: 1) simple low-probability visual stimuli in a 
conventional oddball lab task (Fig. 1 T1) and 2) in-game critical 
events in the Flappy Bird game task (i.e., hitting the pipe, Fig. 1 
T6) to highlight the most significant distinctions. It is important 
to note that this is not a quantitative comparison of specific 
neural effects caused by a clearly defined factor, as is commonly 
done in conventional cognitive research. The two tasks being 
compared here differ in many aspects of cognitive processing. The 
comparison here instead aimed to highlight the overall magnitude 

and cross-trial adaptation pattern during gameplay and assess its 
distinction from the brain response observed in a typical lab task.

  Fig. 2 A  and B   displays the brain response patterns from the 
most representative electrodes across all the single trials (24 in 
total) of low-probability stimuli in the visual oddball task, which 
reveals a clear cross-trial adaptation pattern.  Fig. 2 C  and D   dis-
plays corresponding data for the first 80 trials of recurring 
pipe-hitting events from the game. These single-trial results are 
grand averages after matching the trial order across individuals. 
The visualization clearly reveals an adaptation trend in the brain 
response pattern in the visual oddball task: Early trials show a large 
response to the presence of an oddball, which diminishes with 
repeated exposures ( Fig. 2 A  and B  ). Conversely, neural activity 
in response to the game failure event (pipe-hitting) in the Flappy 
Bird game remained high in amplitude even after 80 trials ( Fig. 2 
﻿C  and D  ).          

1.2.  Systematic Quantitative Comparison of the Adaptation 
Effects Between Game and Nongame Tasks. To more 
systematically compare the adaptation effects between game and 
nongame tasks, we aggregated data from the five typical laboratory 
tasks performed by the same participant cohort. Fig.  3 shows 
the ERP results of 11 brain response waveforms characterized by 
average ERPs from different events in the six tasks. The magnitude 
of ERPs from the game task was noticeably larger than those from 
the five typical laboratory tasks (T1–T5). Since each of the five 
typical laboratory tasks includes two event types (e.g., rare and 
frequent), their ERPs are plotted separately (Fig. 3). To show that 
the large ERP magnitude in the Flappy Bird game is not common 
across all types of events within the game, we plotted a comparison 
of the ERPs generated by the pipe-hitting and pipe-passing events 
in SI Appendix, Fig. S1, which showed a stark difference (i.e., not 
all video game events produce large-magnitude ERPs).

 For a quantitative comparison between T1-T5 and the game 
task, we calculated ERP parameters using five metrics: 1) 

Fig. 1.   Illustration of the six tasks (see details in the Materials and Methods section). T1 (Visual oddball task): participants viewed a series of squares in different 
colors with different frequencies and counted the number of colors. T2 (Auditory oddball task): similar to T1 but the squares were replaced by different tones with 
different frequencies. T3 (Semantic violation task): participants read a story segment by segment on the screen. Some segments carried semantic violations. T4 
(Emotion matching task): participants viewed an emotion word followed by a cartoon facial expression. They were asked to judge whether the facial expression 
matched the emotion word or not. T5 (Reinforcement learning task): participants viewed a dot moving along a circle and were instructed to stop the dot at points 
of the circle they believed had a high probability of reward. T6 (Flappy Bird game): participants controlled a bird to navigate through as many vertical pipes as 
possible without hitting pipes or the ground.
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amplitude of waveform envelope, 2) within-participant consist-
ency of single-trial ERPs, 3) cross-participant consistency of aver-
age ERPs, 4) signal-to-noise ratio (SNR) of ERPs, and 5) 
adaptation of response magnitude over trials (see detailed algo-
rithms in Materials and Methods ). The comparative results for the 
first four metrics are displayed in  Fig. 4 , which shows that the 
game task’s ERP parameters stand out distinctively across 
all metrics.        

 Before presenting the fifth metric, we first visualized the sus-
tainability of brain response magnitude over trials by plotting the 
single-trial ERPs in chronological order ( Fig. 5A  , similar to  Fig. 1  
but now in two-dimensional planes). These single trials are again 
grand average results after matching the chronological trial orders 
across individuals. Clear adaptation effects can be observed in the 
majority of laboratory tasks (indicated by the arrows). In contrast, 
the game ERP, while showing distinctly strong activation, does 
not exhibit an adaptation effect ( Fig. 5A  , last panel).        

 To quantify the adaptation effect, we calculated the develop-
ment of response magnitude across successive 30-trial blocks 
( Fig. 5B  ). Statistically, a significant reduction in neural response 
amplitude was found between the first and second 30-trial blocks 
for all lab tasks (Visual Oddball: t(199) = 3.11, P  = 0.002; 
Auditory Oddball: t(199) = 2.87,P  = 0.005; Semantic Violation: 
t(199) = 3.40, P  < 0.001; Emotion Matching: t(147) = 7.91,  

﻿P  < 0.001; Reinforcement Learning: t(199) = 3.19,P  = 0.002). In 
contrast, the game ERP showed no decrease but an interesting 
increase in response magnitude [t(91) = −2.30, P  = 0.024], with 
this high-amplitude response persisting into the third 30-trial 
block (Variation in degrees of freedom in the t  tests was due to 
unequal trial numbers across participants).  

1.3.  Replication of In-Game Response Patterns in Two 
Additional Scenarios. The comparative analysis above showed that 
the brain’s response to critical in-game events exhibits unique and 
distinguishable temporospatial patterns. We now term this unique 
response component P300-CE (P300 critical event variant), as 
it shares spatiotemporal characteristics with the classic P300 
response—an electrophysiological signal peaking at 300 ms or 
later after stimulus onset (11). Here, after compensating for the 
100 ms technical delay in the triggering process between Android 
and Python systems (Materials and Methods), the peak of the 
P300-CE from Flappy Bird aligned with this latency.

 To further validate the association of P300-CE with high-stakes 
critical events, we conducted additional EEG recording from 10 
new participants playing another two simple games designed to 
elicit salient critical events. The first one is a self-developed 
fast-paced video game, called Space Escape, in which participants 
maneuver a circle object through a field of randomly moving dots. 

Fig. 2.   Comparison of the overall brain response patterns across trials between the visual oddball task and the game task. (A and B) Grand-averaged ERPs for 
the 24 rare-stimulus trials in chronological order from the electrode showing the strongest late activity (Cz and Pz). (C and D) Grand-averaged ERPs for the first 
80 trials of the hitting-pipe event in chronological order from the electrode showing the strongest late activity (Cz and Pz).
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The critical event was colliding with the dots. The second game 
was physical, rather than a video game, namely playing the 
Crocodile Dentist toy ( 10 ). Here, the players press the crocodile’s 
teeth one by one. The critical event was the crocodile toy’s sudden 
snapping action.

 The P300-CEs from the three critical event-generating tasks 
are shown in  Fig. 6 . Both the temporal and spatial patterns are 
consistent across the three game tasks ( Fig. 6 B , F , and J  ). The 
magnitude of response remains high in the two new tasks. Note 
that the two new tasks were implemented in a single Python sys-
tem, so there was no trigger delay, which resulted in peak time 
points of the P300-CE more precisely located at 300 ms. The 
P300-CE was reliably observed across all participants, indicating 
the robustness of this response across individuals. This cross- 
participant robustness was consistently shown in all the three game 
tasks ( Fig. 6 C , D , G , H , K , and L  ). Overall, the P300-CE com-
ponent exhibits a simple spatiotemporal structure, characterized 
by a single hump in the time course beginning at around 180 ms 
and peaking at around 300 ms (also applies to the Flappy Bird 

game after compensating for the trigger delay). This reproducibil-
ity across tasks and participants highlights its robustness as a neural 
correlate of critical event processing.           

2.  Discussion

 We reported the identification of a unique brain response pattern 
during gameplay, termed P300-CE, which exhibits distinctive and 
atypical neural characteristics. The uniqueness of P300-CE mainly 
lies in its high energy and nonadapting features across repeated 
events—a phenomenon rarely observed in laboratory tasks for 
basic neural cognitive research. Below we provide further clarifi-
cation and discussion of these findings. 

2.1.  Inferences That Can Be Drawn by Comparing Gameplay 
and Lab Tasks. The most important point to clarify concerns 
the level at which the comparisons were made. In “standard” 
ERP studies, ERP waveforms are normally compared between 
two or more conditions (e.g., happy vs. angry faces, low- vs. 
high-probability stimuli) while all other factors are controlled for 

Fig. 3.   Grand average ERPs time-locked to stimulus/event onset. The ERP waveforms for all electrodes are overlaid, with electrodes Pz and Cz highlighted. The 
scalp maps display the spatial distributions of grand average ERPs within a specific time window (indicated by green shading).

Fig. 4.   Comparisons of neural response metrics representing magnitude and reliability across tasks. Bar height: mean. Error bars: SE of mean across participants.D
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equivalence. However, this study did not aim for such contrasts. 
Instead, this study concerned the overall output energy of 
brain responses elicited by discrete events and their adaptation 

dynamics across repetitions. The research question was positioned 
at a broader level, exploring what type of (ethically acceptable) 
cognitive task paradigm can sustainably excite the brain. More 

Fig. 5.   Visualization and comparison of adaptation features of brain responses across different tasks. (A) Single-trial ERPs sorted chronologically. The places 
where clear adaptation in amplitude is visible are indicated by black arrows. (B) Comparison of mean ERP amplitude for the first, second, and third 30 trials (all 
conditions included and sorted chronologically) from representative electrodes and time windows (Materials and Methods) shows significant over-time reduction 
in lab tasks but significant increase in the game task. Note: *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 6.   Detailed characterization of P300-CE and its consistency across participants and games. (A) The Flappy Bird game. (B) Time courses of critical-event-locked 
ERPs for all electrodes and topographic distributions of P300-CE at the peak time window (peak latency ± 50 ms). Note that the Flappy Bird P300-CE includes a 
~100-ms time course delay due to Android-Python systems communication. (C) Consistent presence of P300-CE across participants (ERPs at Cz). (D) Same as (C) 
but normalized to z scores for better visualization of the cross-participant consistency. (E–L): Results for the other two games.D
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specifically, it examines what type of stimulus input can induce 
high-energy, nonadapting brain responses over repeated stimulus 
exposures. This is not a trivial question given the brain’s energy-
efficient principle (12–14), which leads to the typical finding 
that the brain response signals are weak (15) (overwhelmed by 
noise and spontaneous activities) and decrease over repetitions 
(1–4). Sustained high-energy responses require additional neural 
mechanisms to counteract adaptation—an effect well-documented 
in phenomena like pain sensitization (5, 16).

 Crucially, while we demonstrated that the critical in-game 
events can evoke these intriguing high-energy and nonadapting 
brain response patterns, this study is not designed to, and cannot, 
pinpoint the exact factors or their interactions driving such a sig-
nificant pattern shift from laboratory tasks to game tasks—a fun-
damental question left for future research. We propose that it is 
the entirety of the complex cognitive states created by the game 
scenarios—including situational and cognitive dynamics, player 
engagement, and cognitive-emotional anchoring—that enables 
this shift. The critical events that triggered the brain response are 
a point where all contextual game–player interactions are at a 
climax. This proposal will be discussed in more detail in the section 
below from a cognitive processing perspective.  

2.2.  The Cognitive Scenario and States Created by Games. As 
mentioned earlier, numerous factors or complex interactions could 
account for the differences between the patterns of P300-CE 
and typical ERPs observed in other laboratory tasks in terms of 
magnitude and adaptation dynamics. For example, in the Flappy 
Bird game, the colorful and dynamic visual field in the game scenes 
and the vibrant and playful game design (Fig. 1) could be major 
contributing factors. However, the colorless, minimalist Space 
Escape game helped us rule out these factors as P300-CE was 
intactly observed in this game. Another potential factor may lie in 
the need for intense cognitive processing in video games, including 
visual scanning, monitoring of the dynamic visual scenes for live 
visual motor coordination, and reward-linked active control. This 
is a common cognitive scenario for both the Flappy Bird and 
Space Escape games, as well as many fast-paced action games. Yet, 
the Crocodile Dentist task suggests that this may not be a strict 
requirement as the P300-CE was also clearly and robustly shown 
after the snapping event upon pressing the right tooth, which is 
not embedded in continuous dynamic visual motor coordination.

 While the current design is not sufficient for us to pinpoint the 
critical factors underlying the genesis of the P300-CE, we propose 
a more fundamental explanation from perspectives of cognitive 
processes for future validation. First, it is important to note that 
P300-CE is not an exogenous brain response elicited by sensory 
input as those triggering events do not create abrupt visual input 
changes. This contrasts with those ERPs from the laboratory tasks, 
which were elicited by the sudden presentation of a stimulus from 
a nonexistent state. The events that generated P300-CE were more 
semantic and abstract in nature (e.g., signaling critical failure), 
rather than sensory, which makes P300-CE an endogenous 
response component.

 From a basic cognitive perspective, the key underlying processes 
common across the three game scenarios can be described as fol-
lows: Players (participants) actively assembles a vast amount of 
cognitive resources and attention to concentrate on an impending 
event that 1) will occur momentarily but without precisely pre-
dictable timing or precursor event, and 2) will release information 
(usually binary) bearing significant cognitive relevance. In both 
the Flappy Bird and Space Escape, one significant cognitive impli-
cation of the event of hitting the pipe or bullet dot is the negation 
of the players’ visuomotor coordination and control abilities. The 

cognitive effort associated with reward-related control and the 
intense, real-time visual-motor processes, together with the game 
mechanics may jointly create a landscape that makes the critical 
events highly salient both cognitively and emotionally. Moreover, 
the symbolization of “death”, “termination”, “annihilation” in the 
video games may make the event more salient and relevant to 
players. In the Crocodile Dentist game, although the snapping 
down of the crocodile toy’s mouth does not hurt as the teeth are 
made of rubber, the entire design and setting may create mental 
images of “biting”, “tearing”, “pain”, “injury”, and so on. Such 
symbolization arises from the player’s understanding of and 
immersion in the game’s narrative and mechanics (e.g., the circle 
hitting the moving dot symbolizes a spaceship’s crashing upon 
hitting a space rock). Finally, these meaning-laden events, com-
pressed into a single point of time, trigger strong neural responses.

 In a nutshell, creating a high-stakes event that will be released 
momentarily in a simple form is proposed to be the most essential 
contributing factor here. Similar cognitive scenarios with high 
excitability and sustainability can be found across a wide spectrum 
of gaming and entertainment forms.  

2.3.  Proposed Theoretical Accounts for P300-CE from a Neural 
Biological Perspective. The scalp distribution of P300-CE 
closely resembles that of novelty-P3 [or P3a (4)], though with 
key differences: The novelty-P3 exhibits lower magnitude (4) 
and diminishes over repetitions (17). This similarity suggests 
that P300-CE, while being distinct from novelty-P3, may share 
some of its neural substrates. Novelty-P3 has been identified 
to be a unique neurophysiological response elicited by novel 
information that triggers the brain’s orienting reflex (18). 
Its neural anatomical sources involve a distributed network 
supporting the brain’s context monitoring and orienting 
responses, including frontal and temporo-parietal regions, 
modulated by subcortical systems (11, 19). Although the 
critical events in games are not inherently novel, we propose 
that they elicit similar responses to those generated by novelty 
detection through a linkage to the brain’s fundamental reward 
and survival systems, as we elaborate below.

 Events that bear strong cognitive or emotional significance are 
likely to impact our reward system ( 20   – 22 ). In skill-based games, 
critical events usually indicate players’ success or failure in per-
forming required actions, thereby reflecting their cognitive skills. 
In high-stakes situations (e.g., a decisive league match), those 
critical events are further tied to all benefits contingent on the 
outcome. The validation or invalidation of our cognitive skills is 
expected to activate the reward system, as these skills are evolu-
tionarily advantageous ( 23 ,  24 ).

 Beyond skill-approving events, various other types of discrete 
events can impact the cognitive system through different aspects 
of the reward system or primitive survival-related circuits. For 
instance, in a first-person shooter game, the sudden appearance 
of an enemy soldier at the corner may trigger the P300-CE com-
ponent, not through (in)validating cognitive skill, but through 
symbolizing a life-threatening event (which is still powerful even 
in a virtual setting). Virtual settings, with appropriate designs, can 
effectively trigger primal neural responses despite the agent’s cog-
nitive awareness of their artificiality, much like the tension evoked 
by horror films. In the Crocodile Dentist game, the looming threat 
of being “bitten” by the crocodile toy’s teeth creates visceral ten-
sion, even though the participants were fully aware that the teeth 
were made of rubber. If we change the setting to pressing 10 
buttons on a table with a random one triggering an LED light, 
the P300-CE will not likely be generated (a testable hypothesis 
for future studies). These examples illustrate how different critical D
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events activate our reward system (including aversion avoidance) 
in different ways.

 It is therefore plausible that P300-CE originates from a strong 
response activity in deep-brain, subcortical, and limbic 
system-related structures, which are evolutionarily hardwired for 
reward seeking and threat avoidance ( 25   – 27 ). These deep brain 
structures rapidly process reward-bearing signals and stimulate 
the brain’s cognitive control system, preparing for subsequent 
actions. If correct, the wide central scalp distribution of P300-CE 
( Fig. 6 ) may partially reflect response components radiating from 
deep brain structures.

 Future research can further validate this hypothesis by admin-
istering various tasks, both game and nongame, capable of gener-
ating the P300-CE component. The neural activity should be 
measured using brain imaging technologies (e.g., fMRI) to localize 
the relevant neural anatomical regions. A diverse array of events 
and paradigms could be employed to test the theory about the 
cognitive scenario proposed above.

 The involvement of deep-brain structures may also explain the 
nonadapting nature of the P300-CE component. From the “new 
brain—old brain” perspective ( 28 ,  29 ), deep-brain structures are 
phylogenetically older than the neocortex (note that we are not 
adopting a simplistic binary view here). Functionally, the older 
and more primitive parts of the brain have hard-coded a range of 
response routines more directly linked to survival-critical functions 
(e.g., pain response) and thus exhibit rigid, hardwired reactivity 
( 29 ,  30 ). In contrast, the newer brain regions, primarily the neo-
cortex, are mainly responsible for analytical information process-
ing and active learning, which displays strong adaptability and 
learning effects determined by their learning functions.

 However, this does not imply that subcortical regions lack plas-
ticity altogether. Learning often involves interplay between older 
and newer brain systems, which is manifested in behavioral 
changes. For instance, a highly skilled first-person shooter game 
player would not startle (and thus would not generate the 
P300-CE) upon seeing an enemy appearing at the corner if they 
know they are playing against beginners. However, they would 
still experience excitement (and thus generate P300-CE) upon 
seeing an enemy during competitive gameplay in a high-stakes 
tournament.  

2.4.  Implications for Basic Neural Cognitive Research. The 
identification of P300-CE presents significant implications for 
basic neural cognitive research, primarily due to its unusually large 
magnitude and sustainability rarely observed in typical laboratory 
tasks. This finding suggests the potential for developing broad 
research avenues by leveraging P300-CE’s well-structured patterns 
and high signal-to-noise ratio to study the cognitive systems more 
effectively. Traditional cognitive tasks (e.g., visual oddball, face 
recognition, language processing) often encounter technical 
challenges due to weak signal amplitudes and high cross-trial 
variation caused by adaptation, leading to misrepresentation of 
true brain response when averaging trials (31–33). Therefore, 
designing tasks capable of generating P300-CE-like components 
hold significant research value for precisely characterizing neural 
processes.

 Previous research has developed a variety of task paradigms that 
examine cognitive variables related to the game-like scenarios in 
the current study, such as unexpectedness, novelty, error, and 
reward, and their related neural signatures (e.g., novelty-P3, 
error-related negativity, reward positivity). However, the key 
P300-CE-like features have not been reported. In our task T5 (a 
reinforcement learning task), explicit reward and penalty signals 

were introduced, yet the resulting ERPs also lacked the key 
P300-CE features (see  Figs. 3   – 5 ). This discrepancy raises an 
important question: Simple presentation of reward-related infor-
mation in a laboratory setting may not induce the cognitive pro-
cessing of reward-related information in the real world. Contextual 
settings, task mechanics, and stimulus characteristics, likely play 
essential roles in creating more realistic brain responses. To study 
core cognitive and affective systems (e.g., reward, drive, motiva-
tion), it may be necessary—and more informative—to create 
ecologically valid scenarios rather than stripped-down laboratory 
tasks that isolate reward signals from naturalistic contexts. While 
the three simple game paradigms used here do not fully replicate 
real-world complexity, their ability to elicit the highly atypical 
P300-CE response component suggests that such design evokes 
a qualitatively different intensity level of brain responses, more 
effectively tapping into fundamental cognitive-emotional pro-
cesses. Well-designed game mechanics or tasks may be able to 
simulate semirealistic, naturalistic scenarios that effectively activate 
core neural systems by situating or tricking the brain into relevant 
states. This may be one of the factors behind the highly engaging 
and addictive nature of games, which is an important area of 
research. However, such task paradigms remain scarce in the field. 
Given that valuable and informative brain response signals can be 
generated in an ethically acceptable manner based on these para-
digms, we advocate for broader application and further develop-
ment of this research direction.   

3.  Materials and Methods

3.1.  Participants. The EEG data for this project were collected from a total of 
340 participants under the same lab setting (available for download at https://
osf.io/qp53h/). All participants were healthy Hong Kong residents with normal 
or corrected-to-normal vision and no history of mental illness. The data were 
drawn from two separate projects, a nongame project and a game project.

In the nongame project, 200 participants (mean age: 25.14 ± 4.51 y; 62 male) 
completed a series of tasks, including a visual oddball task, an auditory oddball 
task, a semantic violation task, and a reinforcement learning task. Additionally, 
148 of these participants (mean age: 25.80 ± 4.62 y; 39 males) completed an 
emotion matching task.

In the game project, 130 participants (mean age: 24.69 ± 3.31 y; 43 male) 
completed a Flappy Bird (9) game task. Additionally, 10 participants (mean age: 
25.1 ± 6.79 y; 3 male) completed two other game tasks: Space Escape (a cus-
tomized visuomotor game) and Crocodile Dentist (10) (a salient event-generating 
game) to further test the consistency of the game-induced brain response pattern. 
Written consent was obtained from each participant prior to the experiments. 
Both projects were approved by the Human Research Ethics Committee of The 
University of Hong Kong.

3.2.  Experimental Design. All experiments were conducted in the same EEG 
laboratory using the same data acquisition system, procedures, and settings. 
Participants were seated in a sound-attenuated room and instructed to perform 
the tasks while their brain signals were recorded using a 32-channel BrainAmp 
DC amplifier (Brain Products, Germany). The recordings were online-referenced 
to electrode Fpz and digitized at a sampling rate of 1,000 Hz. The five computer-
based laboratory tasks were presented using PsychoPy (34) on a desktop monitor 
(1,920 × 1,080 pixels, 23.8 inches, 16:9 aspect ratio). The Flappy Bird game task 
was implemented via a self-developed app on an Android-based tablet (HUAWEI 
MatePad Pro, 2,560 × 1,600 pixels, 10.8 inches, 280 PPI). The Space Escape 
game task was implemented using PsychoPy on the same desktop monitor. All 
tasks sent relevant event markers to the EEG data stream. Because the Flappy 
Bird game ran on an Android system, an additional time delay of approximately 
80 to 100 ms occurred due to the delayed communication between the Android 
app in the Tablet and the Python-based trigger system in the PC caused by the 
additional computational cost for maintaining and updating real-time animations 
in the Flappy Bird game.
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The tasks used in this study (Fig.  1) are described as follows. All are self-
customized tasks.

1)	 Visual oddball task (6 min): Participants viewed a sequence of 160 colored 
squares (135 blue or red, 24 red or blue, and 1 yellow) presented randomly 
one by one in the center of a screen. They were instructed to count the number 
of colors presented. The yellow square served only a verification check and 
was not included in data analysis. Blue and red squares were used in data 
analysis, serving as the frequent and rare conditions, respectively. Each square 
was presented for 200 ms followed by an interstimulus interval (ISI) uniformly 
distributed from 1,700 to 2,700 ms.

2)	 Auditory oddball task (4 min): This task is the same as the visual oddball task 
except that the three colors were replaced by three tones (400 Hz, 600 Hz, and 
650 Hz) each with a 200-ms duration. The ISI was uniformly distributed from 
1,200 to 1,700 ms. The rare and frequent stimuli in the visual and auditory 
tasks were used as contrasting conditions in the data analysis.

3)	 Semantic violation task (8 min): Participants read a written story presented 
segment by segment on the screen. Some segments contained semantic vio-
lations, such as “rock” in “I like to eat rock.” These violations occurred in 19% of 
the total stimuli (259 segments). Each segment was presented on the screen 
until being replaced by the next one. The ISI was fixed at 2,000 ms. Violated 
and nonviolated stimuli were used as contrasting conditions in data analysis.

4)	 Emotion matching task (3 min): Participants were shown a word (“Happy”, 
“Sad”, or “Angry”) for 200 ms, followed by a cartoon facial expression that 
remained on the screen until a response was made. They were asked to judge 
if the emotion of the facial expression matched the word by pressing left (no) 
or right (yes) keys. The task included 120 trials, with an equal ratio of matching 
to nonmatching conditions. Matched and mismatched facial expressions were 
used as contrasting conditions in data analysis.

5)	 Reinforcement learning task (7 min): A dot moved along a circle at a con-
stant speed of 100 degrees per second. Each point on the circle had a certain 
probability of yielding a reward (+1 point) or penalty (−1 point). Participants 
were instructed to maximize their cumulative reward by stopping the moving 
dot (pressing the spacebar) at points they believed had a high probability 
of reward. Feedback on reward or penalty was displayed immediately in 
the center of the screen after stopping the dot, and a new trial began once 
the spacebar was pressed again. The task included 120 trials, with the ERP 
responses to reward and penalty feedback used as contrasting conditions in 
data analysis.

6)	 Flappy Bird game (18 min): This game task was rebuilt on Android platform 
following the game rules of the original version of “Flappy Bird” released in 
2013 (9). Participants controlled a bird to navigate through a series of vertical 
pipes with passages in between. The bird has a constant rightward horizontal 
speed (an illusion, as in practice the bird stays in the same horizontal position 
on the screen and the pipes moved leftward; see Fig. 1), and participants tapped 
the screen to keep the bird in the air. Each successful passage through a pipe 
earned the participant one point. The game ended when the bird hit a pipe 
or the ground, starting a new round upon tapping the screen again. All sound 
effects were removed. The formal session started following 2 min of practice. 
User events during the game were recorded and synchronized with the EEG 
system, with the bird hitting the pipe serving as the key event for EEG analysis.

7)	 Space Escape game (8 min): This is the first task designed to examine the 
consistency of brain response patterns observed in the Flappy Bird game. The 
key similarity between the Flappy Bird game and the Space Escape game is 
the presence of critical cognitive events. In the Space Escape game, partici-
pants used the four arrow keys on the keyboard to control the movement of 
a solid circle (radius: 12 pixels) on the screen. The screen also contained one 
hundred randomly wandering bullet dots (radius: 3 pixels), moving at a speed 
of 30 pixels per second. A target number appeared at a random position, 
and participants had to navigate the solid circle to the number and touch 
it while avoiding the moving bullet dots. Contact with a bullet dot ended 
the game. When the target number was reached, it disappeared, and a new 
number (incremented by 1) appeared at another random position for the 
participant to navigate to. Upon reaching a target number of 6, the difficulty 
level increased significantly with the addition of another 200 moving dots 
uniformly distributed on the screen. This heightened difficulty eventually led 
to the end of the game when the participant’s circle collided with any of the 

dots, marking the critical event. No sound effects were added to this game. 
Participants played the game 12 times, generating 12 trials of EEG data that 
included the critical event.

8)	 Crocodile Dentist game (3 min): This is the second task designed to examine 
the consistency of brain response patterns observed in the Flappy Bird game. 
Participants played Crocodile Dentist (10), a physical toy featuring a plastic 
crocodile with a wide-open mouth secured by an internal lock. Pressing one 
of its teeth (made of rubber) released the lock, causing the mouth to snap 
shut and pinch participants’ finger. Participants were instructed to press 
each tooth decisively. The session was video-recorded alongside a computer 
monitor displaying an evenly paced number sequence for synchronization 
with the EEG stream via a trigger system. The time points of the crocodile’s 
mouth snapping were extracted from the video and used as events for ERP 
generation. The task consisted of 12 rounds, yielding 12 events.

3.3.  EEG Data Preprocessing and Analysis.
3.3.1.  EEG data preprocessing. EEG data preprocessing and analysis were con-
ducted using MATLAB (MathWorks, R2021a) and EEGLAB toolbox (35). The EEG 
data for each task were preprocessed largely following our previous procedures 
(36). The specific steps in this study are as follows: 1) down-sample to 250 Hz; 
2) bandpass-filter at 1 to 45 Hz; 3) interpolate EEG signals from bad electrodes 
identified as outliers beyond four times the median absolute deviation (MAD) 
across all electrodes; 4) rereference to the average. Artifact removal was conducted 
on the preprocessed EEG segments for each task using Independent Component 
Analysis (ICA) (37) and MARA toolbox (38). The probability threshold used for 
automatically removing non-neural artifacts in MARA was set to 0.5.
3.3.2.  Characterization of brain responses to key events in each task. Single-
trial ERPs were obtained by extracting EEG signals surrounding the key time 
points in each task. The ERP epoch spanned from −200 ms to 1,000 ms relative 
to the key events, with the (−200 ms, 0 ms) time window used for baseline cor-
rection. Single trials from each participant and task were sorted in chronological 
order. Outlier trials were marked as NaN (not a number) as placeholders but were 
excluded from cross-participant averaging. This approach ensured the alignment 
of the trial order of all single trials for the grand average. The average ERPs were 
calculated by averaging non-NaN single trials.
3.3.3.  Feature comparison of ERPs across tasks. We compared eleven ERPs 
from the five conventional laboratory tasks and the Flappy Bird game based on the 
following five metrics: 1) envelope amplitude, 2) within-participant reliability of 
single-trial ERP, 3) cross-participant reliability of average ERP, 4) signal-to-noise 
ratio of single-trial ERP, and 5) adaptation of ERP across single trials. These met-
rics were calculated based on the electrode that displayed the strongest neural 
activation in each task according to the grand average ERP waveforms and scalp 
maps (see the electrode labels shown in Fig. 5).

Below are the algorithms for calculating each ERP feature:

1)	� Envelope amplitude: This metric assesses the amplitude of ERP, calculated as 
the maximum vertical range of trial-averaged ERP amplitude over the time 
window from −200 ms to 1,000 ms.

2)	� Within-participant reliability of single-trial ERP: This metric assesses the con-
sistency of single-trial ERP within a single participant. For each participant, 
we calculated the Pearson correlations between every pair of single-trial ERPs 
(−200 ms to 1,000 ms) and obtained the average. This average value reflects 
the within-participant reliability of single-trial ERPs.

3)	� Cross-participant reliability of average ERP: This metric assesses the consist-
ency of trial-averaged ERP across participants. We first calculated Pearson 
correlations of average ERPs between each pair of participants. The mean and 
SE of the between-pair correlations were then obtained from the entire pool. 
To ensure comparability across tasks, we universally used the first 20 trials to 
calculate the average ERP for each participant (participants with fewer than 
20 trials were excluded).

4)	� Signal-to-noise ratio: This metric assesses the magnitude of ERPs relative 
to the background neural noise. We calculated the SNR of ERP as the ratio 
between the signal power and the noise power. To ensure comparability, we 
again only included the first 20 trials in each task. Signal power was calculated 
based on the SD of ERP across the time window of (0 ms, 1,000 ms), while 
noise power was calculated in the same way but based on the [−200 ms, 0 
ms] time window.D
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5)	� Adaptation: This metric characterizes the changes in neural activation 
magnitude over trials and time, potentially reflecting brain adaptation. We 
examined the adaptation characteristics of the ERPs in both descriptive and 
statistical manners. Descriptively, we averaged the single-trial ERPs across par-
ticipants based on matched chronological order of trials, i.e., the first trials of 
all participants were averaged to obtain a grand average of the first trial, and 
similarly for the second, third, and so on. The resulting grand average single 
trials were visualized in a color plot to depict adaptation effects. Statistically, 
we compared the amplitudes of the ERP averaged from the first 30 trials and 
the subsequent 30 trials by applying a paired t test. For nongame tasks, the 
trials for two conditions were pooled together. The amplitude was calculated 
from the same electrodes as above that represent the strongest global power 

and from the time windows that capture the main activation of the time course 
(see the marked green areas in Fig. 3). Participants with fewer than 60 trials 
were excluded from this analysis.

Data, Materials, and Software Availability. Anonymized EEG and behavioral 
data have been deposited in OSF (https://osf.io/qp53h/) (39).
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