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Multiple timescales of learning indicated by changes in
evidence-accumulation processes during perceptual decision-
making
Aaron Cochrane 1,2,3✉, Chris R. Sims4, Vikranth R. Bejjanki5, C. Shawn Green 6 and Daphne Bavelier1,2

Evidence accumulation models have enabled strong advances in our understanding of decision-making, yet their application to
examining learning has not been common. Using data from participants completing a dynamic random dot-motion direction
discrimination task across four days, we characterized alterations in two components of perceptual decision-making (Drift Diffusion
Model drift rate and response boundary). Continuous-time learning models were applied to characterize trajectories of
performance change, with different models allowing for varying dynamics. The best-fitting model included drift rate changing as a
continuous, exponential function of cumulative trial number. In contrast, response boundary changed within each daily session, but
in an independent manner across daily sessions. Our results highlight two different processes underlying the pattern of behavior
observed across the entire learning trajectory, one involving a continuous tuning of perceptual sensitivity, and another more
variable process describing participants’ threshold of when enough evidence is present to act.
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INTRODUCTION
Learning occurs in nearly every behavior that humans perform,
from complex cognitive or motor tasks to basic perceptual
discriminations. Understanding the processes responsible for
learning therefore has implications for most human actions in
contexts ranging from education to rehabilitation1,2. Surprisingly,
then, research on learning processes often tends to be limited in
several ways. First, it is quite common for research on learning to
focus exclusively on either the accuracy or identity of choices3,4 or
the time taken to make choices (i.e., response time or RT5,6). This is
despite a vast amount of research showing that richer inferences
regarding the processes at hand become possible when
considering both the speed of decisions and their accuracy in
combination7–10. Second, in the limited set of cases where both RT
and accuracy have been considered in learning studies, modelling
has nearly always involved substantial aggregation across
participants and/or learning trials. Often, a separate stationary
model is fit to all of the trials from each individual learning session
or “block” of trials and then learning is examined through
differences in the model parameters from session to session (or
block to block). Such aggregation remains common despite
research showing that it may be both theoretically and empirically
ill-advised, as it can lead to missed or erroneous inferences about
the underlying learning processes11–13. Below we briefly review (A)
modelling approaches to linking RT and accuracy and their
previous use in the assessment of learning in the perceptual
domain and (B) continuous-time and individual-participant
approaches to assessing learning in the perceptual domain, in
order to motivate the need to combine these two approaches in a
single framework. This combined approach allows us to address
key questions regarding the way in which specific aspects of the
perceptual decision-making process (e.g., how quickly perceptual
evidence accumulates, how much evidence is needed before

triggering a response) change through time in a multi-session
perceptual learning study.
The most prominent model linking RT and discrete choice (e.g.,

accuracy) conceptualizes behaviors as resulting from the noisy
accumulation of evidence until a decision boundary is
reached7,9,10,14. For example, consider a task where participants
view a field of moving dots (see Supplementary Fig. 1). On each
trial, 15% of the dots move coherently either to the left or to the
right, while the rest of the dots move randomly. The participants’
task is to, as quickly and accurately as possible, indicate whether
the coherently moving dots are moving to the left or to the right.
Under an accumulator modeling approach, the perceptual system
continuously accrues evidence in favor of the respective
alternatives (left or right), until the amount of evidence in favor
of one of the alternatives reaches some boundary, at which point
the given decision is made. This model is formally defined by a
bounded Wiener diffusion process9,10. The resulting Drift Diffusion
Model (DDM) is characterized by four parameters (see Fig. 1). In
two alternative forced choices, evidence begins accumulation at a
bias point and proceeds with a constant noise and a drift rate (DR)
until it reaches a boundary, with the distance between the
boundaries being defined by a response boundary (RB) parameter.
A last parameter is an additive value to the RT that is theoretically
independent of the evidence-accumulation process (non-decision
time; NDT). Estimating these parameters using hierarchical
Bayesian methods has become increasingly common, which
formulates DDM parameter estimation as generalized mixed-
effects regression fitted to the joint RT and accuracy distribu-
tions8,15,16. Here we implement similar methods using Stan17–19.
DDM parameters are theoretically associated with psychological

components of decision-making processes (noting, however, that
there is frequent debate regarding the empirical isomorphism
between DDM parameters and processes7,20, but see ref. 21,).
Sensitivity, such as would be associated with better or worse
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perceptual abilities, is generally associated with DR. Response
caution or a “speed-accuracy tradeoff” is generally associated with
RB. In the present study, only DR and RB were modeled as
changing with time, with bias and NDT being held constant over
time within participants. While it is the case that bias and NDT
parameters have been shown to change when strategies are
experimentally manipulated20,22 and NDT variability has been
seen to be reduced during some perceptual learning tasks23, there
are also known trade-offs in estimation methods leading to
inferred differences in NDT when the true distributional differ-
ences are due to other parameters, such as DR and RB14. In light
of this, bias and NDT were estimated for each participant
as a constant, with only DR and RB considered as time
varying according to an exponential learning function
asymptoteþðstart�asymptoteÞ�2trialNumber=rate see Methods and
Supplementary Note; 3,5,24.
Given the putative links between DDM parameters and

psychological components of the speeded decision-making
process, one may expect such models to be prominent across
most related sub-domains of research. However, this is not
necessarily the case. For instance, perceptual learning25 is an
important domain for studying the basic science of neuroplasti-
city, as well as being implicated in many rehabilitation and
occupational applications1,26–30. In the perceptual learning
domain the overwhelming majority of research has examined
discrete choice outcomes of perceptual decision-making. This is
despite the fact that disregarding an important behavioral variable
like RT is inefficient, and may even be misleading due to the
potential for biased estimates of changes in performance31.
A small number of papers have reported investigations of DDM

analyses of learning in perceptual decision-making tasks. Yet,
results establishing the extent to which certain parameters change
on different timescales are especially important but remain rare. In
an early example in which monkeys completed a visual
discrimination task with oculomotor responses, changes in DR
were found to be related to learning-related performance
improvements32. Human perceptual learning studies have pro-
vided similar evidence regarding training-related changes in
DR23,31.
Other task manipulations utilizing DDM frameworks have

investigated the extent to which various types of instructions

affect parameter estimates over the course of learning. For
example, when explicitly directing learners to emphasize either
speed or accuracy in perceptual learning, the effects were best
characterized by a DDM model that allowed for between-session
variations in DR, RB, and NDT20. While overall NDT did not reliably
change over time, there were main effects of learning (comparing
session-level parameters) indicating decreases in RB and increases
in DR. In a shorter-timescale study33, across 24 short blocks
(approximately 1 min each), participants’ RB tended to converge
on an optimal level, according to a rate-of-reward calculation. This
latter result indicates that rapid measurable changes may occur in
RB on timescales that are too short to be typically associated with
perceptual learning, as well as too short to be measured when
using standard methods of aggregating over large blocks to
measure learning.
Diffusion models of learning have also been used in conjunction

with other measures such as functional neuroimaging. In one such
study of dot-motion direction discrimination training, specific
increases in trained-stimulus DR were observed and related to
fMRI activation in supplementary eye field and in ventral premotor
cortex, while nonspecific increases in RB were also observed, and
model comparisons did not support training-related changes in
NDT34. In another study, cognitive training led to increases in DR
and decreases in RB, although the only associations between
training-related changes in DDM components and neural mea-
sures was a link between changes in RB and those in striatal
activity35,36. The relations between DDM parameters and neural
change thus clearly have the potential to be powerful tools for the
cognitive neuroscience of learning, yet the relative lack of basic
research on the influence of experience on DDM parameters
means that tests of such correspondences remain largely under-
constrained.
In all, previous investigations of perceptual learning using DDMs

have shown the utility of evidence-accumulation models for
understanding the mechanisms of change occurring during such
learning. One potentially major limitation of these lines of research
is that they have utilized analysis methods that necessarily
instantiate certain implicit assumptions about the time-course of
performance and learning. Specifically, assessments of changes in
both DR and RB have often involved comparing parameters that
were fit to full blocks or sessions of data. That is, if a study involved
four separate days of learning with each day containing 700 trials,
the typical analysis approach would involve fitting a separate DDM
model to each participant’s and day’s data—aggregating across all
700 trials within the given days—and then using day-to-day
changes in parameter estimates to make inferences about
learning. This is problematic because such an approach is
implicitly assuming that all trials within a day are the same, or
in other words that there is no learning occurring within each day,
and that learning can only manifest between days. As such, little is
known about the more precise time scales at which within-day
and between-day parameters changes may occur and how these
changes may interact.
Aggregation-based approaches to assessments of perceptual

learning, and their associated issues, are not unique to studies that
have utilized DDM-type models. Instead, aggregation-based
approaches have been commonplace throughout the perceptual
learning literature (e.g., fitting a threshold for each individual block
or session; using a point estimate from an adaptive staircase).
More recent work has shown that by eschewing aggregation, and
instead directly modeling perceptual ability as a function of the
smallest unit of training time (i.e., trial number), core questions of
theoretical interest in perceptual learning can more directly be
addressed regarding the influences of experience on percep-
tion13,37–39. For example, different forms of generalization that
result from perceptual training have been dissociated using by-
trial models, with generalization in the form of learning to learn

Fig. 1 Drift diffusion model. The decision-making process is
defined by a noisy accumulation of evidence (three examples
indicated by grey lines) with some mean value, or Drift Rate, to
either a lower or an upper bound, also termed Response Boundary.
Evidence accumulation begins at some Bias point (typically
expressed as a proportion of the Response Boundary), and an
additive Non-Decision Time parameter accounts for aspects of the
RT distributions that are not attributable to the evidence-
accumulation process.
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(i.e., improved learning rate) being distinguished from immediate
improvements in perception12.
One major reason that well-calibrated models of learning are of

particular importance in the study of perceptual learning is that
accurately identifying the functional form that learning takes can
allow for significant inferences about the underlying processes,
both at behavioral and mechanistic levels3,5,6,40. This is particularly
true in cases wherein learning takes place across multiple days. If
experience-dependent change occurs during both the actual
training and in between-session consolidation, then both features
of the learning trajectory should be incorporated into the model
of change. Alternatively, if only the overall amount of task
experience influences perceptual abilities (e.g., cumulative trial
number across all days), then modeling between-day disconti-
nuities may lead to unnecessary model complexity and overfitting.
Such questions are especially relevant for learning in perceptual

decision-making, an evidence accumulation process, wherein the
underlying DDM parameters may change at different time scales.
Indeed, although timescales of learning in perceptual training can
be revealing, they are often also contentious. While certain
perceptual learning experiments have involved only a few
hundred trials41, other experiments have discarded hundreds of
trials as “task learning” and instead only considered subsequent
(often extensive) trajectories of change. This latter view, in which a
full trajectory of performance is first dominated by “task learning”
and only later by “perceptual learning,” would predict that
changes in perception should be characterized by a shorter and
then a longer timescale of improvement. Yet, such predictions
have not been consistently borne out in analyses of the
mathematical properties of perceptual learning curves3,24. None-
theless, other sources of evidence have indicated that processes
underlying perceptual improvements may be changing on
different timescales. Neuroimaging studies have indicated, for
example, that initial plasticity in sensory areas precedes larger-
scale changes in connectivity42. A phenomenon that is perhaps
even more striking is the role of sleep-associated consolidation for
successful perceptual learning43–45. In an extreme case, if changes
were to be completely reliant on sleep, then within-day
performance would be fully stationary and learning curves would
be dominated by between-day discontinuities. Such a proposition
is incompatible with a large amount of empirical evidence3,24,33,39.
At the opposite extreme, completely continuous trajectories of
learning and a total absence of between-session discontinuities
would seem equally incompatible with published findings. How,
then, could the two patterns of results be resolved?
The use of evidence-accumulation models and joint distribu-

tions of RT and accuracy provide a great opportunity in this
domain, as they integrate more information than either data
source alone, and they do so in such a way to retain
interpretability of parameters. Prior evidence for unitary processes
of change3,24 may thus be compatible with evidence for multiple
timescales of change or for between-day discontinuities in
performance43,45,46, with different dynamics being borne out in
different components of the evidence-accumulation model’s
parameters. That is, both between-day discontinuity and
between-day continuity may be present in processes involved
during perceptual learning, but these co-existing timescales of
change may only be evident when utilizing analyses of perceptual
abilities that allow for process-level decompositions of perfor-
mance on multiple timescales.
The current work modeled learners’ perceptual performance

using a Wiener diffusion process that could take several possible
forms of change over time. Data was used from a previously
published47 computerized behavioral task that required partici-
pants to respond whether a field of dots was moving leftward or
rightward as quickly and accurately as possible. On each of four
separate days, participants completed 700 trials of this task (100
trials of each of 7 levels of motion coherence, see Methods; note

that in the published work47, only the final day of training was
utilized). Auditory feedback regarding accuracy was provided on
each trial.
In line with the work reviewed above, DR and RB were of

primary interest. Four candidate dynamics of change (in DR, RB, or
both) were considered (see Fig. 2 for examples). The first
possibility for each parameter is a fully stationary or “constant”
process, wherein a parameter does not change across the four
days of participants’ training on a 2AFC dot-motion direction
discrimination task. The second possibility (“continuous”) involved
change in the parameters as a continuous exponential function of
overall experience or trial number. The third (“day-resetting”)
allowed a within-day continuous change (as a function of within-
day trial number) that repeated for each day, implying a transient
and consistent divergence from baseline due to within-day task
experience but a reset to that baseline between days. The fourth
(“flexible”) allowed a within-day continuous change that also had
the same speed (a time constant defining the shape of the
exponential function), but independent starting and asymptotic
levels each day, thereby providing a great deal of flexibility in
capturing both within-day and between-day changes. Models with
constant parameters were nested within all other models, the day-
resetting form of change was nested within the flexible change,
and the continuous change could be imitated well by the flexible
form of change.
The different forms of change, and their combinations,

implicate certain patterns of change in the processes underlying
perceptual decision-making. While we expect that DR should
increase with experience due to improvements in perceptual
sensitivity20,32, our methods further allow for the adjudication of
whether this change is driven by between-day disjunctions
(possible in flexible DR models) or independent of such disjunc-
tions as assumed in continuous DR models. Further, while both
long-term20 and short-term33 modulations in RB have been
observed, we explicitly test whether these dynamics are part of
the same underlying multi-session trajectories (continuous RB),
driven primarily by within-day changes away from baseline levels
(day-resetting RB), or involve both within-day and between-day
changes (flexible RB).
When considering that DR and RB could take different forms of

change, we thus ended with 5 possible dynamic models (that are
plausible given previous empirical and theoretical work on
learning) plus a sixth static model for comparison. These 5 models
included [1] a continuous DR, continuous RB model with dynamics
of both parameters driven by cumulative overall experience and
uninfluenced by between-day discontinuities, [2] a flexible DR,
flexible RB model with changes in both parameters varying by
both within-day and between-day effects, and the corresponding
[3] continuous DR, flexible RB and [4] flexible DR, continuous RB
models which allow changes due to overall experience in both
models but only allow between-day discontinuities or idiosyncra-
sies in a single DDM parameter. An additional combination of [5]
continuous DR and day-resetting RB was tested to rule out the
possibility that the performance of the continuous DR, flexible RB
model may be attributable to purely resetting within-day changes
in RB, with no between-day differences in RB.
We first estimated models with the above-described combina-

tions of possible parameter changes. We then identified which
model provided the best fit to our visual dot-motion discrimina-
tion perceptual learning data. Fully Bayesian nonlinear mixed-
effects model estimation and comparison allowed for a robust and
replicable modeling framework, given our use of publicly-available
statistical packages (see Methods). Additional robustness provided
by Bayesian models comes from their inherent quantification of
uncertainty around each parameter estimated, particularly when
the possible correlations between parameters are not known.
To preface our results, we found that the model allowing for the

most flexible change in both DR and RB fit better than most
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others, including the model that assumed unchanging parameters
across the entire timescale of the experiment. Notably however,
one simplification of this most-flexible model further improved fit
indices. The overall best model included increases in DR as a
relatively simple and constrained exponential function of overall
trial number, without between-day discontinuities, while for RB,
flexible, within- and between-day variations were modeled.
Compatible results were found when fitting separate models to
each participant rather than all participants simultaneously.
Whether comparing the full mixed-effects nonlinear models or
separate by-participant nonlinear models, multiple methods of
model comparison supported the notion that perceptual learning
may be best understood as resulting from a continuous DR
change accompanied by flexible changes in RB.

RESULTS
We first assessed all models’ convergences, then compared the
models using change in LOOIC (approximation to leave-one-out
cross-validated deviance48) as well as Bayes Factors (estimated
using bridge sampling; see Methods). All models converged
(maximum fixed-effects R-hat < 1.03), with the winning model
having a minimum tail effective sample size of 311 and no
divergent transitions. For fixed-effects estimates of all models, we
refer the reader to Supplementary Note (section Best-fitting model
summary output and Tables 1–5). We also assessed whether
learning was evident on all stimulus coherence levels; by-

participant aggregated comparisons indicated that RT reliably
decreased for all coherence levels. Accuracy meanwhile increased
numerically for all coherence levels, however, this was only
statistically reliable for intermediate coherence levels (see also
Supplementary Figs. 4 and 5).

Model comparison results
We first compared the most complex model (flexible DR flexible RB)
to the simplest model (constant DR constant RB), finding that the
model allowing flexible change in parameters over time fit better
(ΔLOOIC=−3650.5). Subsequent model comparisons tested
whether a more parsimonious form of change in which DR and
RB were continuous functions of overall experience could
effectively account for the perceptual learning observed. The
continuous DR, continuous RB model did not improve model fit
compared to the flexible DR flexible RB model (ΔLOOIC= 1383.1),
nor did the flexible DR, continuous RB model (ΔLOOIC= 1434.1). In
contrast, a model in which DR was a continuous function of overall
trial number while RB flexibly changed did improve model fit over
the more complex (flexible DR flexible RB) model (ΔLOOIC=−301.2).
A different constraint on RB, that of a repeating continuous
function of within-day trial number (continuous DR day-resetting
RB) did not fit better than the continuous DR flexible RB model
(ΔLOOIC= 1931.6; see Fig. 3 for a plot of all fits’ relative likelihoods).
Using the LOOIC criterion, the best model therefore included a

continuous DR change and a flexible change in RB. Using Bayes
Factors estimated using model-pairwise bridge sampling, very

Fig. 2 Example trajectories of exponential change in DR and RB, and their implications for observed behavior (i.e., Response Time and
Accuracy). Characteristic effects can be observed (e.g., accuracy [b] increases with increasing DR [c] or increasing RB [d]; RT [a] decreases with
increasing DR or decreasing RB), although the strengths of specific links may vary across the different levels of stimulus coherences. The
values shown here were the fixed-effect posterior distribution estimated values and 95% CI from models reported in the Results, evaluated at
the median stimulus coherence for the sole purpose of illustration (see also Supplementary Note section Best-fitting model summary output
and Tables 1–5).
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similar model comparison results were found (see Table 1). The
same model (continuous overall-trial DR and flexible RB) fit better
than each of the other models.

Characteristics of the best-fitting model
The best-fitting model recovered well both accuracy (r= 0.76) and
response time (r= 0.56; see Methods and Supplementary Figs. 2
and 3). This model indicated an improvement (increase) in DR as
an exponential function of overall trial number throughout the
whole experiment (i.e., trials 1 through 2800). Model fixed effects
indicated that DR increased with training (start mean = 0.44, se =
0.05; asymptote mean = 0.96, se = 0.11), with a sample-level time-
to-half-of-learning of 1261 trials. Every participant’s DR was
estimated as increasing (of participants’ point estimates, change
mean = 0.516, sd = 0.175, min = 0.209, max = 0.800).
Response boundary parameters changed less systematically

across days and participants (see Fig. 4). While at the group level
slight decreases appeared to occur, with some “resetting”
between days, interpreting such group-level effects is difficult
due to the large amount of inter- and intra-individual variability49.
Within-day decreases in RB were present in most participants
(80.9%, 61.9%, 76.2%, and 55.1% of participants, on each of the
four days respectively). Between-day changes in RB were primarily
decreasing from day 1 to day 2 (95.2% of participants), but only a
minority of participants decreased from the end of day 2 to the
beginning of day 3 or the end of day 3 to the beginning of day 4
(28.6% of participants in each transition).

By-participant model fits
We fit the same set of models, without the mixed-effects structure,
to each participant’s data separately and compared the within-
participant results in the same manner. The continuous DR flexible
RB parameterization was the best-fitting model in 19/21
participants using LOOIC comparisons and 15/21 participants
using Bayes Factor comparisons. There was also a fairly high
correspondence between the by-participant point estimates of
parameters, when comparing models fit to participants separately
and the best-fitting model fit to all participants simultaneously
(e.g., time constant of change in DR Pearson r= 0.77, asymptotic
DR r= 0.85). Each of these comparisons thus reinforces the results
of the full mixed-effects models. See Supplementary Note for
further details.

Logistic model fits
In order to provide a comparison to more typical approaches to
perceptual learning research (i.e., that typically only consider
participant accuracy), we fit several models using continuous-time
changes in thresholds of logistic psychometric functions39,50.
These models were fit to only accuracy data rather than the joint
RT and accuracy distributions. Candidate models of change in by-
trial threshold included the continuous, day-resetting and flexible
forms described in the primary analyses, as well as an additional
combination of continuous and day-resetting forms (i.e., adding a
day-resetting trajectory offset to the continuous function). The
best-fitting model was this last one, with an intermediate level of
complexity (LOOIC= 61182.7). The other models, in decreasing

Table 1. Bayes Factor (base-3 log) comparisons of models using 15 runs of bridge sampling, with the most equivocal being reported.

A B C D E # wins

F. Flexible DR, Flexible RB Inf 382.6 628 −119.9 468.5 4

E. Flexible DR, Continuous RB Inf −58.2 137.4 −591.6 2

D. Continuous DR, Flexible RB Inf 547.6 Inf 5

C. Continuous DR, Day-resetting RB 628 −210.7 1

B. Continuous DR, Continuous RB Inf 3

A. Constant DR, Constant RB 0

Positive numbers indicate that the row model fit better, while negative numbers indicate that the column model fit better. Inf indicates that the bridge
sampling procedure could not effectively estimate the relative evidence between models, with the row model being preferred. The last column shows the
number of pairwise comparisons in which the row model was preferred (5 being the best, 0 being the worst). These rankings align with the rank order of the
models in Fig. 2, notably, with the same best-fitting model with continuous DR and flexible RB.

Fig. 3 Results of model comparison. LOOIC were rescaled (inverse so to be interpreted as a relative likelihood) and normalized to the best-
fitting model, which is represented by 0. This scaling provides interpretability as an approximation to a log Bayes Factor, to the extent that the
LOOIC is analogous to the predictive probability provided by a Bayesian Information Criterion (BIC55). Alternatively, differences larger than 4
that are also larger than several standard errors (i.e., all differences in this Figure) are interpretable as indicating improvement in model fit
from one model to another57. Numbers indicate a general ranking of model complexity. Error bars indicate the standard error of the cross-
model pointwise LOOIC predictive density.
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order of goodness-of-fit, were flexible (LOOIC= 61202.6), contin-
uous (LOOIC= 61238.6), and day-resetting (LOOIC= 61352.3).
These results, as in the main results, supported an intermediate-
complexity model involving two timescales of change. Yet, unlike
the DDM models, the logistic fits were unable to provide any
mechanistic account regarding what changed on which timescale.
While the lack of consistent improvements in accuracy on the
smallest and largest coherence levels means that these results are
largely driven by accuracy changes at intermediate coherence
levels for most participants (see Supplementary Fig. 4), this
limitation of psychometric function fits further demonstrates the
utility of understanding the joint distributions of RT and accuracy
during learning (i.e., due to the improvements in RT on all
coherence levels; see Supplementary Fig. 5). See Supplementary
Note for further details.

DISCUSSION
Here we used nonlinear mixed-effects DDMs to characterize
within-day and between-day changes during a perceptual

decision-making task. Changes in DR were found to be best
modeled as an exponential function of the number of trials over 4
different days of training. In contrast, changes in RB were best
modeled by heterogeneous dynamics with both continuous
within-day changes and unsystematic between-day variations in
trajectories of change. Such findings support the conclusions of
earlier work identifying DR as an index of perceptual learning in
monkeys32 and humans31,34 while adding additional specificities
in adjudicating between timescales of change.
More broadly, this work corroborates the rapid adjustments of

RB observed in perceptual decision-making33 while providing a
possible unifying explanation for two seemingly contradictory
observations in perceptual learning: Improvements as a con-
tinuous function of experience39 and large between-day
discontinuities43. The present work suggests that each of these
phenomena may be occurring at their own time scales.
Importantly, it points to the different processes mediating
decision making (DR and RB in particular) changing with rather
different dynamics. Previous work has identified crucial roles for
inhibitory neural activity between training sessions (particularly

Fig. 4 Fitted point estimate values of the best-fitting model. For both DR [a, b] and RB [c, d], left panels [a, c] show the overall fits to all
participants (see also Fig. 1). The right panels [b, d] show fits for three example participants (chosen to illustrate patterns of change and
heterogeneity). Each day is represented by a different line type.
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during sleep) for increasing improvements’ resistance to retro-
active interference51, with our results providing complementary
evidence for multiple processes. While improvements in
perceptual sensitivity accumulate gradually with training (e.g.,
associated with higher DR and with excitatory and plastic neural
states), much observed behavioral variation may be in fact the
result of modulations in inhibitory processes (e.g., associated
with higher decision criteria RB and with inhibitory and stable
neural states). That is, the speed at which inhibitory processes
can be upregulated or downregulated may be much faster than
the speed at which perceptual processes are modifiable, leading
to much behavioral variation as well as important processes of
consolidation and resistance to interference.
As such, using only impoverished discrete-choice behavioral

data could prevent or bias possible inferences regarding learning
trajectories31. For instance, robust improvements in performance
occurred in accuracy for only some coherence levels whereas RT
showed more widespread improvements. Integrating both of
these into a single model-based approach allowed us to better
parcel out sources of variation and identify changes in perceptual
sensitivity and decision processes. Practically, the present work
provides a clear justification for the use of diffusion models’ DR
parameter as an index of perceptual learning as a function of each
and every training trial. The interpretability of RB is more complex
due to the presence of both within-day and between-day
dynamics. While such changes are in line with RB reflecting
adaptive choices during decision making, such as being more or
less risk-averse, the source of such large across-day and across-
participant heterogeneity remains poorly understood. Convergent
measures (e.g., neuroimaging) or formalized predictions of
performance (e.g., “optimal” caution levels33) may provide future
clarity for the processes of change occurring on this faster and
more disjoint timescale.
An important component of the present work is that it uses

advanced yet relatively accessible quantitative methods (see
Supplementary Note for the best-fitting model’s code). The
increasingly widespread availability of the DDM estimation
methods in statistical packages assists in providing a larger
number of researchers with the tools needed to conduct the
analyses reported here. While the computational resources
needed were extensive (at least several weeks of computer time
for each model), that limitation should become less problematic as
increasingly highly-powered computers become more common-
place. In addition, once the groundwork has been established
regarding appropriate model parameterizations for learning, those
models can be used as test cases to develop and assess more
efficient fitting methods. We recognize that the models reported
here only represent a small portion of the possible models of
change in perceptual learning. Yet, we believe they are sufficient
for novel and informative inferences, and we have not fit various
intermediate models due to their likely lack of informativeness
and the extensive computational resources necessary to estimate
model parameters.
As with the wide applicability of DDMs to cognitive as well as

perceptual processes, the approach applied here has applications
far beyond learning in visual motion perception. Using DDMs to
better understand mechanisms contributing to trajectories of
learning may be useful in word learning52, cognitive training, or
other learning contexts in which information must be quickly and
accurately acted upon.
Perceptual learning holds many translational promises as well

as acting as a window into mechanisms of adult neuroplasticity,
yet understanding perceptual learning is predicated on appro-
priate inferences from learners’ perceptual decision-making. By
using a formal evidence-accumulation model of perceptual
decision-making, seemingly contradictory propositions regarding
trajectories of learning can be explained: Different components of
evidence accumulation may be changing within training sessions

and between days on independent timescales. Here we have
presented evidence that perceptual sensitivity (DR) changes as a
continuous function of trial number, while the amount of evidence
needed to elicit a decision (RB) dynamically changes both
continuously within a training session and unsystematically
between days.

METHODS
Participants and procedures
Data were archival and only secondary data analyses were
conducted for this paper; procedures were originally approved
by the University of Rochester ethics board and informed
consent was obtained from each participant. Data, originally
reported in Green, Pouget, and Bavelier47, were collected from
21 male young adult participants completing 4 consecutive days
each of a dot-motion discrimination task53,54. Only the last day’s
data were reported in the original paper. Participants were
originally included to fall into either an “action video game
player” group (mean age = 18.8) or a “not action video game
player” group (mean age = 20.6). One participant was excluded
from the original sample of 22 due to an unexplained very long
response time distribution on one session. The current paper is
not primarily concerned with possible differences between
game player groups, which will not be addressed, although
every model does include between-subject fixed effects
controlling for potential differences between groups on each
diffusion model parameter (see below). Such fixed effect
parameters should mitigate possible bimodality in participant-
level parameters. Stimuli were presented on a 75 Hz CRT monitor
using Psychtoolbox (Brainard 1997). Left or right coherence
percentages were 0.8%, 1.6%, 3.2%, 6.4%, 12.8%, 25.6%, or
51.2%, in a randomized order.

Modeling framework; brms multilevel nonlinear fits with
various timescales
To fit by-trial continuous-time drift diffusion models we used the
brms package in R, which itself uses the Stan Bayesian
modeling framework17–19. Models were, in essence, nonlinear
generalized regressions of the joint RT and accuracy distribu-
tions, with each trial’s drift diffusion parameters being either
static over all trials or a function of trial number (parameterized
in several different ways; see the next section). In turn each
model’s DDM parameters, whether unchanging or related to
specific components of time-related change, were themselves
the fit value of a generalized linear mixed-effects model
(estimated in parallel see ref. 38). Such a framework allowed
for simultaneous estimation of all parameters for all participants.
Another crucial benefit of our approach was that, because brms
includes default priors for Wiener diffusion generalized linear
models, the only priors necessary to manually specify were those
related to the nonlinear components of models (i.e., amount of
time taken to change, and an NDT with a small additive offset
of 0.001 seconds). Default priors improve the direct applicability
of our implementation to novel datasets and increase the ease
with which others may conduct such analyses, while coming at
the cost of a likely decrease in efficiency and greater difficulty
interpreting our Bayes Factor results (i.e., because priors were
not explicitly adapted to our dataset or hypotheses). For details
see the Supplementary Note.
Regardless of the exact combination of parameter changes

implemented, changes were always defined as a DDM parameter
being an exponential function of trial number (see Eq. 1). Every
participant had the model’s set of DDM parameters estimated for
them, utilizing the mixed-effects structure described above (i.e.,
by-participant random intercepts). In this parameterization the
time constant of change (rate, or inverse speed) was independent
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of both the start and asymptote of a given parameter. The critical
differences between models being compared involved the time-
scale of change (i.e., whether trialNumber was within-day trial
number or cumulative across all days) and, if within-day trial
number was considered, whether start and asymptote parameters
were shared across all days or whether they were allowed to vary
across days. The rate parameter was the binary log of a time–to-
50%-of-change constant. The constant 2 added to the rate
prevented trajectories from indicating 50% of change in less than
2 trials, which assists in model identifiability and estimation. Note
that param may be DR or RB.

param ¼ asymptoteparam þ ðstartparam � asymptoteparamÞ � 2ð1�trialNumberÞ=ð2þ2rateparam Þ

(1)

Models being compared
Models being compared began with “constant” models in which
parameters did not vary by time. In this comparison, coherence
was either linear (untransformed) or log-transformed, then
median-centered. Our comparison between these two models
established the empirical basis for the linear relationship
between DR and coherence53. In this comparison to determine
the scaling of stimulus strength with relation to DR, we found
that the constant-parameter model with a log-transformed
stimulus coherence DR fit much worse than the same model
with DR as a linear function of coherence (ΔLOOIC= 3781.3). For
this reason, all subsequent analyses used a linear function of
coherence.
Parameters were then allowed to vary as a continuous function

of overall trial number (continuous) or continuous function of
within-day trial number with within-participant across-day con-
stant starts and asymptotes (day-resetting). The most complex
model (flexible) allowed for a within-day change with separate
starts and asymptotes for each day; each participant only had one
rate, to assist in estimation.
These forms of change allowed for model comparisons to

adjudicate between distinct potential mechanisms for experience-
dependent change. A mechanism of change due solely to
cumulative experience with the task, or law of effect, would
benefit the continuous form of change over the flexible form of
change due to its greater parsimony (i.e., smaller parameter
number). Similarly, a mechanism of change involving a within-day
perturbation from each participant’s baseline and a between-day
return to that baseline would be indicated by the day-resetting
parameterization of change, which is also more parsimonious than
the fully flexible form of change. In contrast, if model comparisons
support flexible trajectories for a parameter, it indicates that the
mechanisms of change are likely to be heterogeneous for that
parameter. Many possible generative models are compatible with
this flexible form of change, and selectively applying constraints
(as the continuous and day-resetting models do) provide tests of
whether the complexity of the flexible model is warranted or if the
more parsimonious and mechanistically interpretable models are
justified.
As described in Eq. 1, parameters were defined as 3-parameter

exponential functions of time with starting values, asymptotic
values, and a 50%-of-change time constant defining the rate of
change3,24,37. Continuous change and day-resetting change each
estimated one start, rate and asymptote for each participant; the
two forms of change only differed on the timescale of that
change. Flexible change estimated one rate for each participant
across the four days, plus one start and one asymptote for each
day for each participant. All priors were default where possible,
with the rate parameters having normal priors centered on 25% of
the maximum trial number (i.e., 175 for within-day change and
700 for full-experiment change). These priors’ SD was 1, thereby

leading most of the density (i.e., between +2 and -2 SD) to be
between the full timescale of change and 1/16th of that timescale
of change.

Model specification and priors
We report model formulas in the common “Wilkensen” format, for
clarity and similarity to the R implementation (example: driftRate ~
predictorA + (predictorB | groupingVariable)). In this syntax the
predicted variable (here, the drift diffusion parameter) is to the left
of a tilde. The predictors are to the right of the tilde. A 1 indicates
an estimated intercept value. Components of the predictors in
parentheses are random effects, with predictors to the left of the
vertical bar and the grouping variable to the right of the
vertical bar.
All models had the following shared features:
Both action video game players (AVGP) and non-action video

game players (NVGP) were included, with fixed main effects
controlling for any inter-group differences on each parameter
in any given model. (All parameters also have participant-level
estimated coefficients). Trials with RTs below 0.16 or above
2.5 were excluded. Time-evolving components were estimated
as binary log (i.e., base-2) of the time constant to 50% of change.
Drift rate was estimated with no link function. The prior was set

to the default brms prior for the drift rate (given our data),
student_t(3,1,10). Across models, drift rate was always estimated
with a fixed-effect intercept, a by-subject intercept, and a by-
subject slope for median-centered coherence (i.e., drift rate varied
linearly, by subject, as a function of stimulus coherence). Models
were tested that included either “raw” coherence percentages or
their log transforms, in order to test the assumption that the
relation between coherence and drift rate would be linear.
Example formulas: fixed drift rate: drift_rate ~ 1 + VGPstatus +
(coherence || subj), asymptote of a time-evolving drift rate: drAsym
~ 1 + VGPstatus + (coherence || subj).
Response boundary was estimated on a log scale. The prior for

all models was set to the default brms prior for the response
boundary (given our data), normal(-0.6, 1.3). By-subject intercepts
and fixed-effects intercepts were estimated. Example formulas:
fixed response boundary: response_boundary ~ 1 + VGPstatus +
(1 || subj), asymptote of a time-evolving response boundary:
rbAsym ~ 1 + VGPstatus + (1 || subj).
Non-decision time was estimated using an exponential

distribution with an offset of .001 and a mean of .15. This offset
approach constrained sampling to plausible values and improved
model efficiency. To the extent that all models use this approach,
there should not be any bias introduced into any models or
comparisons. Fixed-effect intercepts as well as by-subject inter-
cepts were estimated. Example formula: ndt ~ 0.001 + ndtOffset;
ndtOffset ~ 1 + (1 || subj). The bias term was estimated with a
fixed-effect intercept and a by-subject intercept (i.e., bias ~ 1 +
VGPstatus + (1 || subj)). The bias was estimated on a logit scale,
and its prior was normal(0,1).

Model assessment
Given the above forms of change, we tested combinations of
time-varying DR and RB parameters (see Introduction). While we
considered testing time-varying non-decision times as well, we
decided not to include these models in our current manuscript
due to the likely possibility that empirical changes in non-
decision time parameters may reflect spurious patterns due to a
lack of recoverability between non-decision time and RB14.
Primary model comparison used an efficient approximation to
leave-one-out cross-validation48 (see also the documentation for
the loo R package). Using this method we report the LOO
information criterion (LOOIC), which is on a deviance scale (i.e.,
lower values are better) and is interpretable similarly to an AIC or
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BIC value see, e.g.55,56,. Further, models’ LOOIC difference values
larger than 4 are interpretable in terms of the number of
standard errors of the differences57.
Additional model comparison used Bayes Factors estimated

using bridge sampling58. Fifteen bridge sampling runs were
completed using a warped multivariate normal proposal distribu-
tion, which is more robust than the standard multivariate normal
proposal distribution. Bayes factors were transformed with a base-
3 logarithm so that conventional model selections thresholds (i.e.,
3 times as much evidence for one model over the other being
“substantial evidence”) would coincide with cutoffs at -1 and +1.
Of the 15 bridge sampling runs, we report the most equivocal (i.e.,
BFlog3 closest to 0).
Absolute model fit (i.e., recovery of raw data) was assessed by

binning the data into 25-trial blocks (112 blocks total per
participant) and averaging RT and accuracy within each block
for each coherence level. Both the data and predicted values from
the best-fitting model followed this procedure. Given these
binned averages, zero-order product-moment correlations
between the data and the model predictions served to indicate
model recovery of patterns in the raw data. Further visualizations
can be seen in Supplementary Figs. 2 and 3.

By-participant model fits
Additional comparisons fit each of the 6 models compared in the
main Results to participants separately, and used within-
participant Bayes Factors and LOOIC. By-participant fits used the
same set of models (formulas and priors, as relevant to single
participants) as the mixed-effects models fit to all participants
simultaneously. Likewise, comparisons used LOOIC comparisons
and Bayes Factors using bridge sampling. All indices indicated
convergence.

Logistic model fits
Comparisons to more conventional methods of fitting percep-
tual decision-making data (i.e., considering only accuracy) were
implemented using logistic psychometric functions50. Logistic
models utilized an approach that conforms more closely to
classical analyses of psychophysics, that is, fitting a logistic
psychometric function linking coherence to the probability of a
participant responding that motion was in a certain direction. A
lapse rate of 1% was used. Like in the main results, performance
(here, threshold) was modeled as a continuous exponential
function of time, with “time” corresponding to within-session
trial number, overall trial number, or a combination of the two.
Response times were z-scored and by-participant random slopes
of response times were estimated for each of the starting and
asymptotic threshold parameters, as a rough method of
including all of the information in the logistic models that had
also been included in the DDM models

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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