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Abstract

Given appropriate training, human observers typically demonstrate clear improvements in performance on perceptual tasks.
However, the benefits of training frequently fail to generalize to other tasks, even those that appear similar to the trained task. A
great deal of research has focused on the training task characteristics that influence the extent to which learning generalizes.
However, less is known about what might predict the considerable individual variations in performance. As such, we conducted
an individual differences study to identify basic cognitive abilities and/or dispositional traits that predict an individual’s ability to
learn and/or generalize learning in tasks of perceptual learning. We first showed that the rate of learning and the asymptotic level
of performance that is achieved in two different perceptual learning tasks (motion direction and odd-ball texture detection) are
correlated across individuals, as is the degree of immediate generalization that is observed and the rate at which a generalization
task is learned. This indicates that there are indeed consistent individual differences in perceptual learning abilities. We then
showed that several basic cognitive abilities and dispositional traits are associated with an individual’s ability to learn (e.g.,
simple reaction time; sensitivity to punishment) and/or generalize learning (e.g., cognitive flexibility; openness to experience) in
perceptual learning tasks. We suggest that the observed individual difference relationships may provide possible targets for future

intervention studies meant to increase perceptual learning and generalization.
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When human observers are given repeated training on a per-
ceptual task, they typically demonstrate clear and sustained
improvements in performance on the trained task itself
(Dosher & Lu, 2017; Gibson & Gibson, 1955; Green, Banai,
Lu, & Bavelier, 2018; Maniglia & Seitz, 2018; Sagi, 2011;
Seitz, 2017; Watanabe & Sasaki, 2015). For example, if par-
ticipants are repeatedly shown two intervals of moving dots
and are asked whether the direction of motion in the two
intervals was the same or was offset by 4°, participants show
a clear increase in d’ (sensitivity) over the course of training
(e.g., Ball & Sekuler, 1982). Similarly, if participants are pre-
sented with a texture pattern composed of either all similarly
oriented lines or the same basic pattern, but with one of the
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lines presented in a different orientation from the rest, partic-
ipants typically show dramatic reductions in the minimum
presentation duration that is required in order to differentiate
these two types of patterns (Ahissar & Hochstein, 1997).
Although individuals usually do show improvements in
performance on the very task on which they are trained, it is
often the case that this training does not generalize to other
tasks, even if they are highly similar to the training. For ex-
ample, seemingly minor alterations to the size, direction, ap-
pearance, spatial or retinal location, or the orientation of stim-
uli can sometimes (but not always) result in performance
dropping back to pretraining levels (Ahissar, 1999; Ahissar
& Hochstein, 1993, 1997; Ball & Sekuler, 1982; Fahle &
Morgan, 1996; Fiorentini & Berardi, 1981; Poggio, Fahle, &
Edelman, 1991). This lack of generalization to even highly
similar tasks, known as specificity of learning, is of clear the-
oretical interest, as it speaks to possible mechanisms underly-
ing the perceptual learning process (Ahissar, Nahum, Nelken,
& Hochstein, 2009; Lu & Dosher, 2009; Maniglia & Seitz,
2018; Shibata, Sagi, & Watanabe, 2014). It is also particularly
problematic given the goal of applying perceptual learning to
real-world situations (Deveau & Seitz, 2014). In order to have
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real-world value, it is typically necessary for the benefits of
training to generalize across a variety of task parameters and
situations. As such, researchers have attempted to disentangle
the many factors that might contribute to whether learning on
a perceptual task is more generalizable or specific.

Here, the vast majority of work has focused on factors
inherent to training tasks that influence the degree of learning
specificity that is observed. Such factors include training task
difficulty (Ahissar, 1999; Ahissar & Hochstein, 1997; Liu &
Weinshall, 2000), amount of stimulus variability (Deveau,
Lovcik, & Seitz, 2014; Deveau & Seitz, 2014; Fulvio,
Green, & Schrater, 2014; Wang, Zhang, Klein, Levi, & Yu,
2012; Xiao et al., 2008), duration of training (Jeter, Dosher,
Liu, & Lu, 2010), training schedule (e.g., if sleep occurs
between sessions; Karni, Tanne, Rubenstein, Askenasy, &
Sagi, 1994), length of adaptive staircases (Hung & Seitz,
2014), the noise present in the training stimuli (DeLoss,
Watanabe, & Andersen, 2015), the amount of top-down atten-
tional control required (Byers & Serences, 2012), the type of
response that is required (Green, Kattner, Siegel, Kersten, &
Schrater, 2015), the concordance between training and trans-
fer tasks (Snell, Kattner, Rokers, & Green, 2015), and the
feedback given during training (Herzog & Fahle, 1997,
Watanabe & Sasaki, 2015). Yet, while this previous work
has elegantly demonstrated many ways in which perceptual
training paradigms can be manipulated to push population-
level learning outcomes toward greater or lesser specificity,
considerably less work has examined the sizable variations in
learning ability and generalization that exist across individuals
(Baldassarre et al., 2012; Fahle & Henke-Fahle, 1996; Green
et al., 2015; Schmidt & Bjork, 1992; Withagen & van
Wermeskerken, 2009). Indeed, while the examination of
individual-difference predictors (e.g., personality, motivation,
cognitive abilities) of learning and generalization has been
common in domains such as educational and IO psychology
(Barrick & Mount, 1991; Blume, Ford, Baldwin, & Huang,
2010; Burke & Hutchins, 2007; Colquitt, LePine, & Noe,
2000; Grossman & Salas, 2011; Herold, Davis, Fedor, &
Parsons, 2002; Holmes & Gathercole, 2014; Machin &
Fogarty, 2003; Naquin & Holton III, 2002; Pugh & Bergin,
2006; Richardson & Abraham, 2009; Schultz, Alderton, &
Hyneman, 2011; Titz & Karbach, 2014; Uttal, Miller, &
Newcombe, 2013), the topic has largely been neglected in
perceptual learning.

In fact, within the domain of perceptual learning, there is
very little work on the even more fundamental question of
whether the individual differences that have been observed
to date in learning and/or generalization of learning represent
meaningful patterns or idiosyncratic noise. It is certainly the
case that before considering what individual-difference factors
may influence “perceptual learning” or “perceptual generali-
zation,” it is important to first demonstrate that such general
abilities exist (otherwise questions about individual
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differences may be idiosyncratic to what individual perceptual
learning task is considered). While the question of whether
aspects of performance (e.g., initial ability, rate of learning,
asymptotic level of performance) are correlated at the individ-
ual level across multiple perceptual learning tasks is a seem-
ingly basic question, it has significant implications both for
theory and for possible translational applications of perceptual
learning. For instance, one recent theoretical framework has
put forth that certain types of perceptual training (in particular,
training with action video games) can result in enhancements
in the general ability to learn new perceptual tasks (Bavelier,
Bediou, & Green, 2018; Bejjanki et al., 2014). Such a frame-
work requires that there is a general ability that underpins each
individual’s ability to learn to perform new perceptual tasks,
and that this ability can subsequently be enhanced through
training. Another influential framework has argued that the
behavioral results of perceptual learning studies can be used
as a window into the potential underlying neural bases of the
learning (Ahissar et al., 2009). For example, under this frame-
work, highly stimulus-specific learning could be indicative of
a low-level locus of learning. Therefore, if significant com-
monalities are seen across tasks (particularly tasks that often
produce stimulus-specific learning), it would suggest that at
least some portion of the learning is occurring in more stimu-
lus and/or task general areas.

The only paper (to our knowledge) that has examined
whether there is a common ability to learn to perform percep-
tual tasks is recent work by Yang et al. (2020), who had
participants perform five visual perceptual learning tasks in
addition to an auditory perceptual learning task and an N-back
working memory learning task. While none of the individual
pairwise correlations in the magnitude of learning between
tasks was significant, a multivariate regression model fit
across the entirety of the data set revealed a significant
participant-level factor. This result is thus the strongest indi-
cation to date that individual differences in perceptual learning
are not idiosyncratic noise, but do in fact represent (at least
partially) a consistent difference in ability across participants.
This group further found that a number of other individual
difference measures, including those related to cognitive abil-
ity (e.g., IQ) and personality (e.g., neuroticism and agreeable-
ness), were related to this general ability to perform perceptual
learning tasks.

Although our research was conducted prior to the publica-
tion of Yang et al. (2020), and thus was not designed specif-
ically in light of that work, our work both complements and
extends their findings. Specifically, like Yang et al. (2020), we
had participants complete multiple perceptual learning tasks
(two, in our case—motion and texture discrimination) along
with a battery of possible cognitive and personality/
dispositional predictors. Our study, however, extended their
work in a number of ways. In particular, we assessed both
learning and generalization to new stimuli on the same task
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after learning (e.g., train on a motion task with dots moving in
one direction; test generalization on the same motion task with
dots moving in another direction, which has often been asso-
ciated with specificity). To this end, our training tasks were
chosen because they induce both significant individual differ-
ences in learning of the core training task and in the degree to
which that learning generalizes to new stimuli. This, in turn,
allowed us to assess not just whether there is a global ability to
learn new perceptual tasks, but also whether there is an inde-
pendent ability to transfer learning to new tasks. Furthermore,
our methods and analytic approach allowed for a finer-grained
measure of the perceptual learning curves and potential com-
monalities across tasks. Specifically, Yang et al.’s (2020)
training tasks utilized adaptive staircases. While such adaptive
staircases have a host of benefits, they are not ideal for mea-
suring fine-grained details of learning because they necessar-
ily confound time and task difficulty. Staircase methods also
provide metrics of performance that are aggregations over
many trials, thus “initial performance” is not truly an estimate
of performance on Trial 1, but rather an estimate of perfor-
mance on Block 1 which aggregates over hundreds of trials.
Our training task design instead allowed for time-continuous
(at the trial-by-trial level) estimates of participant
performance.

Given our full design, we thus sought to assess (a) whether
there are significant correlations across two different percep-
tual learning tasks in terms of initial ability, learning rate, and/
or asymptotic performance; (b) whether there are significant
correlations in the ability to generalize perceptual learning to
new stimuli (above and beyond what could be explained by
differences in initial learning); and, finally, (c) whether any
individual difference-level traits (e.g., cognitive, personality)
were related to these outcomes.

Method
Participants

A total of 35 University of Wisconsin-Madison under-
graduate students (23 females, 12 males), ranging in age
from 18 to 33 years (M = 20.5, SD = 2.9), were recruited
via posted advertisements and received $60 for complet-
ing the study. Six participants were ultimately excluded
either for not completing the tasks as instructed (two), or
for having sufficiently poor performance that the key de-
pendent measures could not be appropriately computed on
at least one training task (four), leaving a total of 29
participants in the final analysis. This sample size was
chosen based upon our primary research questions (i.e.,
whether there is a general ability that underlies perceptual
learning and/or learning generalization across multiple
perceptual learning tasks). As there is no “gold standard”

for how strong correlations need to be in order to indicate
this type of common underlying ability, we chose to be
powered to detect measures sharing approximately 25%
of variance.

Study overview

The study took place over the course of four sessions (90
minutes each; always on separate days) that were sched-
uled within no more than 10 total days (see below and
Supplemental Materials for a full description of the tasks
and design). On the first day, participants completed sev-
eral computerized tasks examining basic cognitive abili-
ties as well as a number of trait/personality question-
naires. On the second day, they completed three blocks
of training on one of two possible perceptual learning
tasks. On the third day, they completed a fourth training
block on the same perceptual training task from the day
before, a generalization block on that task, and then three
blocks of training on the second perceptual learning task.
Finally, on the fourth day, they completed a fourth block
of training on the second perceptual learning task as well
as a generalization block on that task. They finished the
study by completing a number of other questionnaires
(see Supplemental Materials for full order details).

Apparatus

Across the four sessions of the study, participants completed
both pen-and-paper questionnaires as well as computerized
tasks. The computerized tasks were created and controlled
using MATLAB and the Psychophysics Toolbox (PTB-3;
Brainard, 1997; Kleiner, Brainard, & Pelli, 2007). All tasks
were performed in a dimly lit testing room on a Dell OptiPlex
780 computer with a 23-inch flat-screen monitor with an un-
restrained viewing distance of approximately 60 cm. All re-
sponses were made via manual button press on the keyboard,
or with the computer mouse. Participants received instructions
prior to each task and completed practice trials under the su-
pervision of the experimenter, after which they completed the
remaining trials on their own.

Stimuli and design
Perceptual learning/generalization tasks

Dot-motion task In brief, on each trial of this task participants
viewed a 100 ms presentation of 50 black dots presented with-
in a gray circular aperture moving at 1 degree per second. The
direction of the dots was drawn from a uniform distribution
between 105 and 165 degrees (i.e., 135 degrees + 30 degrees;
see Green et al., 2015; Kattner, Cochrane, Cox, Gorman, &
Green, 2017a; Kattner, Cochrane, & Green, 2017b; Snell
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et al., 2015, for use of this type of stimulus generation).
Following a 500 ms mask consisting of randomly moving
dots, participants were asked to indicate whether the dots were
moving more vertically (up arrow key) or horizontally (down
arrow key; note that piloting suggested that the “up/down”
explanation of the task response, rather than the “clockwise/
counterclockwise” explanation, produced better understand-
ing and compliance with the task goals). After each response,
participants received a feedback tone that informed them
whether they were correct.

Participants first completed five practice trials of the
task and then completed three training blocks of 200 trials
each within a single session. In the following session,
participants completed one final training block and then
completed a transfer block of 200 trials. The transfer
block was identical to the training blocks with the excep-
tion that the direction of dot motion was now centered on
225 degrees, and no feedback was provided. The training
and transfer tasks were counterbalanced across partici-
pants such that a subset of the sample received training
on the 135 angle stimuli, as described above, and the
remaining participants received training on the 225 angle
stimuli.

Texture task The texture task was adapted from Ahissar and
Hochstein (1997). On each trial an orienting tone was played
for 500 ms, followed by a variable delay of between 1,000 and
2,000 ms. After the delay, a 7 x 7 item matrix of black lines
was presented in the center of the screen. On half of the trials,
all 49 lines were presented at a 16° angle (“same” trials),
whereas on the other half of trials one of the 49 lines was
presented at a 36° angle (“different” trials). These lines ap-
peared on the screen for a variable stimulus-to-mask stimulus-
onset asynchrony (SOA; 16, 30, 90, 120, 300, or 500 ms),
after which they were replaced with a mask that remained on
the screen until the participant made a response (“same” or
“different”). Participants received feedback displayed on the
screen (“Correct” or “Incorrect”) following each trial.

Participants completed six practice trials at an SOA of
700 ms to familiarize themselves with the task, and then
completed three training blocks of 210 trials (i.e., 15 repe-
titions of each combination of SOA and same/different)
within a single session. In the following session, partici-
pants completed one final training block, and then complet-
ed a generalization block of 140 trials. The generalization
block was identical to the training blocks, with the excep-
tion that the lines were now oriented at a 106° angle, with
the odd lines oriented at a 126° angle, and no feedback was
provided. The training and generalization tasks were
counterbalanced across participants such that a subset of
the sample received training on the 16° and 36° angle stim-
uli, as described above, and the remaining participants re-
ceived training on the 106° and 126° angle stimuli.
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Cognitive predictor battery

Given the reasonable paucity of work on individual-level pre-
dictors of perceptual learning and/or perceptual learning gen-
eralization, the tasks utilized in our cognitive predictor battery
were chosen because they represent a variety of constructs
(e.g., reaction time, working memory capacity, visual atten-
tion) that have frequently been implicated in individual learn-
ing or generalization differences in other domains (e.g., edu-
cation or job-related performance). A detailed description of
each task can be found in the Supplementary Materials.

To assess reaction time (RT), a factor that has often been
associated with learning and learning generalization
(Edwards, Ruva, O’Brien, Haley, & Lister, 2013; Green,
Pouget, & Bavelier, 2010; Heppe, Kohler, Fleddermann, &
Zentgraf, 2016; Ross et al., 2016; Schubert et al., 2015), we
employed three tasks: a simple go task (press a button as soon
as a stimulus appears), a simple discrimination task (an arrow
appears pointing left or right, press the corresponding arrow
key), and a three-alternative forced-choice (3AFC) discrimi-
nation task (one of three boxes lights up on the screen; press
the corresponding button). For all three RT tasks, a recursive
trial-by-trial outlier rejection procedure was performed in or-
der to remove trials on which RT was excessively long (i.e.,
greater than three standard deviations from the mean), after
which average RT across the remaining valid trials was used
as the dependent measure.

Cognitive flexibility was assessed using a task-switching
paradigm. Learning and learning generalization have previous-
ly been shown to relate to cognitive flexibility, particularly the
ability to task-switch and/or multi-task (Glass, Maddox, &
Love, 2013). In our task-switching measure, participants were
asked to classify digits as higher/lower than 5 or odd/even,
depending on instructions presented on the screen (Rogers &
Monsell, 1995). Performance was measured by examining the
average reaction time (for correct trials only) for switch and
nonswitch trials separately. Additionally, switch costs were cal-
culated as the difference in RT for nonswitch and switch trials
(smaller switch costs/faster RTs = better cognitive flexibility).

A filtering task, adapted from Ophir, Nass, and Wagner
(2009), was used to measure selective attention. Like cogni-
tive flexibility, selective attention has also been commonly
observed to relate to learning abilities and, as such, is a fre-
quent target for cognitive training (Bavelier et al., 2018;
Edwards et al., 2013). In this task, participants determined
whether a set of target lines changed orientation from one
presentation to another while simultaneously ignoring
distractor lines. Performance was measured by calculating a
sensitivity score (hits — false alarms) as a function of distractor
set size (2 or 10; less reduction in sensitivity with increasing
distractors = better selective attention).

Working memory abilities have been consistently tied to
learning outcomes, at least partially by virtue of the links



Atten Percept Psychophys (2021) 83:2241-2255

2245

between working memory and fluid intelligence (Bergman
Nutley & Soderqvist, 2017; Karbach & Unger, 2014). As
such, we employed an operation span (OSPAN) task that
was adapted from Turner and Engle (1989) to assess working
memory. An OSPAN score was calculated in two ways: a
“harsh” measure of the total number of letters correctly
recalled in order, and a “lenient” measure of the total number
of letters recalled, regardless of order. The final OSPAN score
was the average of the harsh and lenient measures.

Fluid intelligence is likely the most widely noted individual
difference level predictor of learning in many domains, in-
cluding in education (where the construct in many ways orig-
inated; e.g., Binet & Simon, 1916; Ritchie & Tucker-Drob,
2018; Rohde & Thompson, 2007). As such, we utilized a
subset of the Raven’s Advanced Progressive Matrices
(RAPM) to measure this construct. Performance was mea-
sured by taking the total number of items out of 18 that were
correctly answered.

The final cognitive predictor task, adapted from Kornell and
Bjork (2008), was used to assess complex learning. In this task,
called the painting task, participants learned associations be-
tween painting styles and artist names. They were then shown
a new set of paintings and asked to identify the artist. As such,
this task requires participants to generalize complex perceptual
experience to new stimuli. Accuracy for correctly identifying
the artist was used as an index of performance on the task.

Dispositional/lifestyle habits predictor battery

In addition to the battery of cognitive tasks, participants were
asked to complete several measures designed to assess dispo-
sitional traits (e.g., personality), as well as lifestyle factors.
The goal of the full dispositional/lifestyle habits predictor bat-
tery was to capture key traits that previous research has indi-
cated is predictive of learning outcomes, including those re-
lated to personality, sensitivity to reward and punishment,
motivation and persistence, and use of modern media (e.g.,
Barrick & Mount, 1991; Blume et al., 2010; Burke &
Hutchins, 2007; Large et al., 2019; Richardson & Abraham,
2009; Schultz et al., 2011). Details for each measure can be
found in the Supplementary Materials.

In total, we included five different measures of personality
and related dispositional factors. To measure the five dimen-
sions of the Big Five personality model, we employed the
NEO-PI Big Five Questionnaire (Costa & McCrae, 1992).
Approach and avoidant behavioral tendencies were assessed
using the BIS/BAS measurement tool (Carver & White,
1994). The Sensitivity to Reward/Sensitivity to Punishment
Questionnaire (SPSRQ); Torrubia, Avila, Molt6, & Caseras,
2001) was used to assess sensitivity to both reward and pun-
ishment. To measure individual differences in cognitive
breadth, we used a global/local shape task adapted from
Kimchi and Palmer (1982). Finally, we assessed trait positive

(PA) and negative (NA) affect using the Positive and Negative
Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988).

Additionally, we included two measures of motivation. We
used a persistence scale, adapted from Ventura, Shute, and
Zhao (2013) to measure the tendency to persevere even the
face of great difficulty. We also included a measure of grit,
which is defined as “perseverance and passion for long-term
goals” (Duckworth, Peterson, Matthews, & Kelly, 2007).

Lastly, we included a Media Multitasking Index (MMI)
adapted from Ophir et al. (2009). Although we also assessed
video game experience, none of the participants were experi-
enced gamers, and thus data from this questionnaire were not
analyzed further.

Results

Analytical methods for perceptual
learning/generalization tasks

Performance on each of the perceptual learning tasks were fit
as hierarchical continuous-time evolving regressions (motion
= logistic; texture = Weibull; Kattner, Cochrane, Cox, et al.,
2017a; Kattner, Cochrane, & Green, 2017b), via the R pack-
age brms (Biirkner, 2017; see additional details in
Supplementary Materials). This allowed us to parameterize
performance (i.e., as a starting value, asymptotic value,
amount of time to change) in the threshold of the appropriate
psychometric function (note that lower threshold values indi-
cate better performance on both tasks, and lower rate param-
eters indicate faster learning; i.e., fewer trials required to
achieve learning). Decomposition of perceptual learning into
these dimensions not only allows clarity in tests of individual
differences across tasks, but also facilitates a more mechanis-
tically grounded account of cross-participant variation
(Ackerman & Cianciolo, 2000; Kattner, Cochrane, Cox,
et al., 2017). All bootstrapped models were fit with the R
package TEfits (Cochrane, 2020; see additional details in
Supplementary Materials).

All correlations reported are Spearman rank correlations
that represent relationships across/within the learning tasks.
The significance threshold (given n of 29 and alpha of .05)
is approximately p = .356 (corresponding to ¢ = 2.05).

Did participants learn and generalize in the
perceptual learning tasks?

Before examining detailed patterns of relationships between
and within tasks, it is first critical to demonstrate that the tasks
met the basic criteria laid out in the introduction—namely,
that we observed learning on the tasks over the period of
training (~800 trials) and that we observed some intermediate
degree of generalization (see Fig. 1a). First, with respect to
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learning during initial training, asymptotic thresholds were
reliably lower than starting thresholds in both the texture
(paired ¢ test My;er = —0.60, CI = [-0.69, —0.51]), #28) =
—13.3, dcohen = —4.9, and dot-motion (paired ¢ test My;r =
—18.7, CI=[-26.1,—11.3]), 1(28) = —5.2, dcohen = —1.9, tasks.

Second, with respect to generalization, we observed
reliable increases in thresholds from the end of training
to the start of generalization (generalization cost,
Wilcoxon signed-rank test Z = 5.78), as well as reliable
decreases in thresholds from the start of training to the
start of generalization (generalization benefit;, Wilcoxon
signed-rank test Z = —4.16; see Fig. 1b). Generalization
learning happened in less time than did initial learning
(i.e., smaller rate parameters; Wilcoxon signed-rank test

a.1. Dot-motion model fits
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Z = —2.13; see Fig. Ic). In sum, these results indicate a
nuanced pattern of partial generalization, providing fur-
ther justification for tests of individual differences in
generalization.

Did performance (learning
and generalization) correlate across the two
perceptual learning tasks?

First, we confirmed that overall performance on the two per-
ceptual learning tasks was related, with overall percent correct
correlating at Spearman p = .404. This value exceeds the
statistical significance threshold of p = .356 (given n = 29

a.2. Texture oddball model fits
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Fig. 1 a In both the dot-motion task (a.l) and the texture task (a.2),
participants showed clear evidence of learning during training. We also
saw an intermediate degree of learning generalization (whereby initial
performance on the generalization task was better than initial performance
on the training task, but worse than asymptotic performance on the train-
ing task). This is plotted more explicitly in Panel b (left panel — values
less than zero mean better initial performance on the generalization task
than on the training task; right panel — values greater than zero mean that
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initial performance on the generalization task was worse than the asymp-
totic level of performance on the training task). Finally, as seen in Panel c,
we also noted that participants learned the generalization task more rap-
idly than they had learned the training task (values less than zero indicat-
ing faster learning on the generalization task), suggesting that previous
learning can speed the learning of subsequent tasks that share facets (i.e.,
learn to learn)
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and o = .05). To be conservative, however, below we use this
overall percentage correct correlation value of 0.404 (which is
associated with a two-tailed p value of .03) as our baseline in
discussing relations with specific components of the learning
curves across tasks. We then moved to examining correlations
between specific aspects of the learning process (starting per-
formance, rate, and asymptote).

Starting-performance parameters were not correlated across
learning tasks (p = —0.005; see Fig. 2a). In contrast, the correla-
tion of rate of learning (p = 0.475; Fig. 2b), as well as asymptotic
performance parameters (p = 0.488; Fig. 2¢), exceeded the raw
accuracy correlation value. Here, it is critical to note that the
increase in variance explained is not necessarily additive, yet
neither are the correlations simply reflections of collinearity
(i.e., within tasks’ rate and asymptote parameters share less than
30% of their variance; texture p= 0.501; dot-motion p= 0.33).

We then turned to examining relationships in generalization
across tasks (see Fig. 2d—f). These were each bivariate partial
rank correlations, partialling out the variance associated with
theparameters during initial learning. Overall block-level gener-
alization accuracies were correlated even more highly than
training-task accuracies (p = 0.472), while generalization param-
eters were less correlated than parameters estimated from training
data (start p = 0.37, rate p = 0.31, asymptote p = 0.07).

Q Training starting parameters

b Training rate parameters

Was generalization related to initial learning?

To test the individual-level relationships between training and
generalization, geometric means were calculated across each
of the texture and dot-motion task parameters. This reduces
the noise in the estimate of individual-level variation in learn-
ing starting points, rates, and asymptotes. The following anal-
yses therefore consider each of the above three training pa-
rameters and three generalization parameters (i.e., starting
point, rate, and asymptotic value).

A mixed pattern of correlations was found between training
parameters and generalization learning parameters. Starting
parameters in generalization and training (p = 0.383) did not
meet our threshold for a reliable correlation, with correlations
between starting parameters and other parameters being small-
er still. In contrast, correlations between training and general-
ization asymptote and rate parameters were reliable (rate p =
0.503; asymptote p = 0.585). Notably, an even higher corre-
lation was observed between training asymptote and general-
ization rate (p = 0.676), possibly indicating a mechanism of
generalization in which rate of learning is particularly en-
hanced by initial learning (Kattner, Cochrane, & Green,
2017b).

C Training asymptote parameters
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Fig. 2 Correlations between parameter estimates on dot-motion percep-
tual learning (x-axes) and texture perceptual learning (y-axes). The top
row of plots shows parameter estimates during initial training, while the
bottom row shows parameter estimates during subsequent generalization.
Left column shows starting thresholds, middle column is rate of learning,

Rate of learning: Dot—motion task (log time constant)

9 12 5 6 7 8 9 10
Asymptotic thresholds: Dot—motion task (degrees)

and right column shows asymptotic thresholds. Lines and shaded areas
demonstrate a standard OLS best fit line and 95% Cls. Rho is the
Spearman rank-order correlation between tasks’ parameter estimates.

While most parameters show associations, training starting thresholds
and generalization asymptotic thresholds do not
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These findings provide further evidence that learning rate
and asymptotic performance each reflect meaningful
individual-level variation in generalization. There was also
some evidence that the correlations are independent. Using
bootstrapped robust regression to test the degree to which
generalization rate was predicted by training asymptote and
rate in a single model, only asymptote was found to be a
reliable predictor (asymptote » = 3.00, CI = [0.39, 9.20],
AR? o5 = 0.121; rate b = 0.55, CI = [0.83, 2.00], AR? o5 =
0.023). In other words, training-task asymptotic performance
was related to generalization learning rate even when control-
ling for training-task learning rate. The same applies to gen-
eralization asymptote, which was only related to training as-
ymptote when the analogous model is fit (asymptote b = 0.17,
CI = [0.06, 0.31], AR%,os = 0.250; rate b = 0.015, CI =
[-0.034, 0.059], AR? .. = —0.058).

Were variations in learning and generalization
explained by individual differences?

Descriptive statistics of the individual difference predictors
are reported in Table S2. As discussed above, the three learn-
ing parameters (initial performance, rate, asymptote) reported
here are composite scores formed by calculating the geometric
means between the dot-motion and the texture task parame-
ters. The following are the coefficients of various predictors in
bootstrapped bivariate robust regression models with training-
task parameters as outcome variables (see Table 1; Fig. 3).
Reported coefficient values are from models fit to the original
nonresampled data. Lower values are better in all cases (i.e.,
lower thresholds or times to learn). Caution should be taken
when interpreting the baseline (pretraining) effects, however,
due to the lack of correlation between the two tasks’ starting
thresholds. Finally, given that there were strong a priori ex-
pectations for the direction of the expected relationships in
some cases (e.g., based upon previous theory or upon the
results of Yang et al., 2020), while others were purely explor-
atory, for ease of interpretation we did not correct for multiple
comparisons (which would have involved utilizing different
alphas across the various cells in Tables 1 and 2; note that we
do indicate for each cell whether the relationship falls outside
the 99%, 95%, or 90% bootstrapped CI).

First, scores on the RT tasks predicted pretraining
(baseline) thresholds, such that lower RTs predicted lower
initial thresholds. Additionally, lower Neuroticism, BIS, and
Punishment Sensitivity scores, as well as higher BAS-FS
scores, were each associated with lower initial thresholds.
Next, higher scores on the Painting task and higher Global
Bias, as well as lower Neuroticism, BAS-FS, BAS-RR, and
Punishment Sensitivity scores, were each associated with
faster rates of learning. Finally, superior asymptotic perfor-
mance (i.e., lower threshold) was predicted by lower BAS-
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FS scores, as well as higher scores on both the OSPAN work-
ing memory task and the Painting category learning task.

We next considered predictors of learning in generaliza-
tion, above and beyond initial learning (see Table 2; Fig. 4).
We controlled for initial learning parameters by including the
relevant parameter in our bootstrapped robust linear models
(e.g., when predicting generalization rate using RT, training-
task learning rate would be included in the model as a covar-
iate). Lower initial generalization threshold, controlling for
initial training threshold (i.e., generalization benefit), was pre-
dicted by lower BAS-FS scores and higher Persistence scores.
Faster generalization learning rate, controlling for training
learning rate, was predicted by smaller Task Switch Costs,
lower Openness to Experience, and higher Punishment
Sensitivity. Lower asymptotic threshold in generalization,
when controlling for training asymptotic threshold, was pre-
dicted by higher Painting category learning scores and by
lower Grit scores. Finally, lower generalization cost, or initial
generalization threshold controlling for final training thresh-
old, was predicted by higher Neuroticism and lower BAS-FS
scores.

Discussion

Although it is well documented that there are substantial inter-
individual differences in learning and generalization on per-
ceptual learning tasks, few studies have examined the individ-
ual characteristics that might predict which individuals show
different amounts of learning and/or specificity on these tasks.
Here, echoing results by Yang et al. (2020), we found that
such individual differences are not simply idiosyncratic noise,
but partially represent a shared ability to perform perceptual
learning tasks. Interestingly, although in the work by Yang
et al. (2020) none of the pairwise correlations between tasks
were significant, in our case we observed reliable relations
between tasks. This discrepancy may be partially attributed
to differences in methodology between the work of Yang
et al. (2020) and our own. In particular, while Yang and col-
leagues’ approach allowed for only a reasonably coarse esti-
mate of learning (i.e., with performance aggregated across
sizeable blocks of the tasks), our methods and analytic tech-
niques allowed for a time-continuous estimate of perfor-
mance. This is consistent with the fact that in our data the
learning rate and asymptotic performance parameters were
both more strongly correlated across tasks than an aggregated
measure (i.e., overall accuracy). We note, however, that the
“learning rate” parameter in the work of Yang and colleagues
could also be viewed as a combination of rate and “learning
magnitude” (i.e., their log-linear models conflated rate of
change with the difference between initial and final perfor-
mance), while in our case “learning rate” is best thought of
as a true rate (i.e., a half-life—the time to make it halfway
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Table 1 Robust regression coefficients for the dispositional predictors of learning
Category Predictors Baseline Rate Asymptote
Cognitive RT composite 0.510%* 0.420" 0.300"
Task switch costs 0.030 0.074 0.270
Filter cost —0.004 —0.180 —0.076
OSPAN —0.032 —0.027 —0.440*
RAPM 0.040 —0.240 —0.180
Painting —0.300 —0.430* —0.530*
Personality / dispositional Openness —-0.160 —-0.096 0.015
Conscientiousness 0.200 —0.046 —0.300
Extraversion 0.055 —0.029 0.033
Agreeableness 0.065 —-0.100 —-0.140
Neuroticism 0.350% 0.460%** 0.200
BIS 0.380%* 0.190 —0.140
BAS-D 0.025 0.059 0.160
BAS-FS 0.300* 0.370* 0.480%*
BAS-RR 0.270 0.350% 0.043
Punishment sensitivity 0.470%* 0.310%* —-0.140
Reward sensitivity 0.018 0.069 0.190
Global bias —0.034 —0.360* —0.190
Positive affect —0.022 —0.037 0.018
Negative affect —0.046 -0.034 —-0.009
Motivation / persistence Persistence —0.058 -0.220 —-0.330
Grit 0.300 0.025 —0.052
Lifestyle MMI —0.032 —0.027 —0.440°

*# indicates that 0 falls outside a parameter’s bootstrapped 99% CI. * indicates that 0 falls outside a parameter’s bootstrapped 95% CI. 1 indicates that O
falls outside a parameter’s bootstrapped 90% CI. All learning parameters and predictors are normalized (optimally Yeo-Johnson transformed then Z-

scored) before model fitting to assist with interpretability.

between initial and final performance). Thus, these are not
exactly apples to apples comparisons. These differences in
methodology may also explain why we found essentially zero
systematic patterns in terms of initial task performance
(which, in our case, is very much the estimate of performance
on Trial 1). Early performance in our data instead appeared to
add noise to estimates of individual-level variation (i.e., over
and above task-level variation). A more direct comparison of
these techniques and the inferences they allow for could thus
result in additional insight in the future.

Extending the previous work of Yang et al. (2020), we also
found significant correlations across perceptual learning tasks in
the extent to which learning generalized to new stimuli (after
controlling for the ability to learn the primary task). This suggests
that there is not only a shared capacity to learn that plays a role
across perceptual learning tasks, but also that there is a somewhat
independent ability to generalize experience to new situations.
Generalization, however, was certainly not fully independent of
initial task learning abilities. Instead, both generalization task
learning rate and asymptote were associated with initial learning
task asymptote, such that individuals with a lower asymptotic
threshold following training showed significantly better learning

rates as well as lower asymptotic thresholds on the generalization
task. This suggests that the individuals who came to the best level
of performance at the end of the learning task (when controlling
for baseline ability) had best encoded the underlying principles of
the task, and were thus better able to apply these principles to the
generalization orientation (Harlow, 1949; Kemp, Goodman, &
Tenenbaum, 2010). This is consistent with previous work that
has demonstrated a relationship between amount of learning and
generalization (e.g., Duncan & Underwood, 1952; Fiser &
Lengyel, 2019). Interestingly, learning asymptote predicted gen-
eralization asymptote over and above learning rate, suggesting
that it is the degree of learning that most strongly relates to the
ability to generalize, rather than the speed at which an individual
learns a given task.

Next, although this aspect of the study was exploratory
in nature, previous research has demonstrated that cogni-
tive factors, such as top-down attentional control (Byers
& Serences, 2012) and matrix reasoning (Colquitt et al.,
2000; Yang et al., 2020), are associated with increased
learning in outside domains. Additionally, several studies
have suggested that various facets of personality, such as
conscientiousness (Barrick & Mount, 1991; Blume et al.,
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Fig. 3 Bivariate relations between four predictors (rows) and three com-
ponents of learning in initial training (columns). Scores on the painting
learning task, BAS-FS, and sensitivity to punishment were each associ-
ated with multiple components of learning. Response time (RT) compos-
ite was associated only with variations in initial performance. While all

2010; Burke & Hutchins, 2007; Richardson & Abraham,
2009; Schultz et al., 2011), extraversion (Barrick &
Mount, 1991), openness to experience (Barrick &
Mount, 1991), and neuroticism (Blume et al., 2010;
Yang et al., 2020), are associated with learning ability
on a variety of tasks. As such, we anticipated that similar
patterns would emerge in our study.
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statistics reported predict learning parameters, these parameters are on the
x-axis for the sake of plotting convenience. Scatterplots show Yeo-
Johnson transformed variables; b and CI indicate the overall RLM slope
and bootstrapped 95% CI of the slope. Lines and shaded areas are stan-
dard OLS linear regression fits and 95% CI

While the relationship between several of these cognitive
factors and learning rate were clearly in the expected direction
(e.g., fluid intelligence, reaction time), they did not reach sig-
nificance. However, we note that we were powered only to
detect the somewhat large effects we expected for the corre-
lation between perceptual learning tasks. Thus, it is possible
that these nulls reflect lack of power. We also found, consis-
tent with various views in the field, that cognitive flexibility
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Table 2  Robust regression coefficients for the cognitive and dispositional predictors of generalization (all parameters are controlled for training)

Category Predictors Baseline Rate Asymptote Cost
Cognitive RT composite 0.330 0.370° 0.300° 0.300
Task switch costs 0.390" 0.480% 0.140 0.380"
Filter cost 0.120 0.110 -0.300" 0.150
OSPAN —0.220 -0.360" —0.021 —0.120
RAPM —0.085 0.064 0.190 —0.055
Painting —0.150 —0.200 —0.480* —0.110
Personality / dispositional Openness 0.220 0.400%* -0.170 0.190
Conscientiousness —0.350 —-0.200 0.150 —0.240
Extraversion 0.180 0.098 0.180 0.170
Agreeableness —-0.270 —0.002 0.160 —0.290
Neuroticism 0.340" —0.056 —0.120 0.390*
BIS —-0.120 -0.250" 0.004 0.038
BAS-D 0.042 —0.110 —0.150 —0.001
BAS-FS 0.540%* 0.260 0.200 0.510%*
BAS-RR 0.150 0.008 0.042 0.230
Punishment sensitivity -0.430" —0.420%* —0.052 —-0.190
Reward sensitivity 0.190 0.009 0.041 0.100
Global bias —0.320 —0.100 0.095 —0.250
Positive affect —0.016 —0.110 0.019 —0.007
Negative affect 0.100 —0.120 —-0.037 0.130
Motivation / persistence Persistence —0.430* 0.046 0.041 -0.410
Grit -0.270 0.067 0.290* —0.084
Lifestyle MMI 0.140 0.031 —0.063 0.230

** indicates that 0 falls outside a parameter’s bootstrapped 99% CI. * indicates that 0 falls outside a parameter’s bootstrapped 95% CI. 1 indicates that 0
falls outside a parameter’s bootstrapped 90% CI. All parameters and predictors are normalized (optimally Yeo-Johnson transformed then Z-scored)
before model fitting to assist with interpretability. Cost refers to participants’ starting generalization performance after controlling for asymptotic training

performance.

was particularly related to the ability to generalize (in partic-
ular in terms of learning rate on the generalization task).
Finally, and consistent with the work by Yang et al. (2020),
we found that neuroticism was negatively related to the speed
of learning (i.e., higher neuroticism = slower learning).
Together, these results are broadly consistent, both with a
number of theoretical viewpoints that posit a shared global
underlying learning ability (e.g., “g” in the cognitive psychol-
ogy literature; Spearman, 1904), as well as with theoretical
approaches that suggest not only that such a shared ability
exists in the perceptual domain, but is one that could then
potentially be enhanced via training (i.e., “learning to learn”;
Bavelier, Green, Pouget, & Schrater, 2012; Bejjanki et al.,
2014). Although our work was purely in the visual domain,
the presence of an auditory task in the work of Yang et al.
(2020), as well as a pure cognitive learning task, strongly
suggests that these findings are not completely localized in
visual learning. However, it is still important to note that only
around 25% of the variance—for instance, in learning rate—
was shared across performance measures in the two perceptual
learning tasks. This leaves a great deal of task-dependent

variability remaining, as would be consistent with frameworks
that suggest a somewhat low neural locus for learning in these
tasks (as our population level behavior would most closely
correspond to “partial specificity”’; Ahissar et al., 2009).
Here, we note further that given our sample size, it is possible
that certain aspects of learning that were not seen to be signif-
icantly related in our data set could in fact be correlated, but
again, at values that would indicate a very sizeable amount of
task-dependent variability.

These results also have a number of potential translational
implications. For example, there has recently been a surge of
interest in using both simple perceptual tasks, as well as more
complex tasks like video games (e.g., Bediou et al., 2018;
Green & Bavelier, 2003; Powers, Brooks, Aldrich,
Palladino, & Alfieri, 2013; Toril, Reales, & Ballesteros,
2014; Wang et al., 2016), to improve human performance
and well-being. For example, such tasks have been adapted
as a rehabilitation tool for individuals recovering from strokes
(e.g., Huxlin et al., 2009), as a treatment for individuals with
amblyopia (e.g., Li, Ngo, Nguyen, & Levi, 2011), and as an
intervention to help stave off age-related cognitive decline
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Fig. 4 Bivariate relations between four predictors (rows) and three com-
ponents of learning in generalization (columns; these parameters con-
trolled for the variance of the corresponding initial learning components).
Rate of generalization is related to task switch cost, openness to experi-
ence, and sensitivity to punishment. Asymptotic performance in general-
ization was related to scores on the painting learning task. While all

(e.g., Toril et al., 2014). Additionally, perceptual training tasks
have been used to help train new laparoscopic surgeons (e.g.,
Ou, McGlone, Camm, & Khan, 2013; Schlickum, Hedman,
Enochsson, Kjellin, & Felldnder-Tsai, 2009) and fighter pilots
(Gopher, Weil, & Bareket, 1994; McKinley, Mclntire, &
Funke, 2011). Our findings not only give hope that such train-
ing could be broadly beneficial (particularly if it improved the
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Generalization Rate

Generalization Asymptote

statistics reported predict learning parameters, these parameters are on
the x-axis for the sake of plotting convenience. Scatterplots show Yeo-
Johnson transformed variables; b and CI indicate the overall RLM slope
and bootstrapped 95% CI of the slope. Lines and shaded areas are stan-
dard OLS linear regression fits and 95% CI

global learning ability), but also suggests the potentially im-
portant caveat that naturally occurring differences in learning
and generalization ability could significantly influence the ef-
ficacy of these interventions. As such, identifying individual
predictors of learning ability, and the propensity to generalize
learning to a new task, would make it possible to tailor training
regimens to individuals who fit a certain personality or
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cognitive profile, or identify ideal candidates for studies on the
mechanics of learning and generalization.

While there were several limitations to this study, including
the purely correlational nature of the measures and the fact that
the study was powered primarily for large effects, these find-
ings demonstrate, consistent with work by Yang et al. (2020),
that the large variations in learning and generalization that are
generally seen on tasks of perceptual learning may not only be
influenced by the types of tasks that are used, but also by
naturally occurring characteristics of the participant. More re-
search is necessary in order to better understand how the fac-
tors identified here influence the specificity of learning (in
particular, the personality factors for which there is limited
theoretical work in the perceptual domain).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13414-021-02268-3.
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