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Action video game players (AVGPs) display superior performance in various aspects of cognition, especially
in perception and top-down attention. The existing literature has examined these performance almost
exclusively with stimuli and tasks devoid of any emotional content. Thus, whether the superior performance
documented in the cognitive domain extend to the emotional domain remains unknown. We present 2
cross-sectional studies contrasting AVGPs and nonvideo game players (NVGPs) in their ability to perceive
facial emotions. Under an enhanced perception account, AVGPs should outperform NVGPs when processing
facial emotion. Yet, alternative accounts exist. For instance, under some social accounts, exposure to action
video games, which often contain violence, may lower sensitivity for empathy-related expressions such as
sadness, happiness, and pain while increasing sensitivity to aggression signals. Finally, under the view that
AVGPs excel at learning new tasks (in contrast to the view that they are immediately better at all new tasks),
the use of stimuli that participants are already experts at predicts little to no group differences. Study 1 uses
drift-diffusion modeling and establishes that AVGPs are comparable to NVGPs in every decision-making
stage mediating the discrimination of facial emotions, despite showing group difference in aggressive
behavior. Study 2 uses the reverse inference technique to assess the mental representation of facial emotion
expressions, and again documents no group differences. These results indicate that the perceptual benefits
associated with action video game play do not extend to overlearned stimuli such as facial emotion, and rather

indicate equivalent facial emotion skills in AVGPs and NVGPs.
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Over the past 15 years, a growing body of work within the
domain of cognitive psychology has examined the effects of play-
ing video games on cognitive function. One subtype of video
game, termed action video games (AVG), has been a primary
focus in the field. Recent meta-analytic work indicates that habit-
ual action video game players outperform nonaction video game
players by approximately half of a standard deviation across a
wide variety of cognitive skills (Bediou et al., 2018). Consistent
with broader theories in cognitive psychology, action games have
been distinguished from other game types based upon the load that
they place on core cognitive processes (Cardoso-Leite, Joessel, &
Bavelier, 2020). This differs from other areas of psychology where
games are selected for research based upon differences in content
(e.g., violent content, prosocial content, educational content, etc.).
Key characteristics of interest to cognitive psychologists that are
inherent in action games include the need to track multiple targets
simultaneously (cognitive load), to select targets from within clut-
tered displays (attentional load), to identify targets based upon
fine-grained features (perceptual load), and to perform these com-
putations in the service of producing effective decisions and ac-
tions (planning/motor load). The most common game types that fit
these characteristics are first- and third-person shooter video
games, which together comprise the majority of games that would
be labeled as action video games.

Playing action video games has been shown to be both associ-
ated with (i.e., in cross-sectional research designs), and to cause
(i.e., in experimental research designs) a range of enhancements in
perceptual, top-down attentional, and spatial cognitive skills. Crit-
ically, these enhancements are not seen with other types of video
games, such as life simulation games or puzzle games, for exam-
ple. The perceptual benefits associated with AVG play range from
enhanced contrast sensitivity (Li, Polat, Makous, & Bavelier,
2009), to higher spatial resolution of vision (Green & Bavelier,
2006a, 2007; Latham, Patston, & Tippett, 2014; Schubert et al.,
2015), to reduced lateral and backward masking (Li, Polat, Scalzo,
& Bavelier, 2010; Pohl et al., 2014). Action video game play has
also been associated with superior performance in top-down atten-
tion tasks (Feng & Spence, 2018; Green & Bavelier, 2003; but see
Roque & Boot, 2018), from demanding visual searches (Chisholm,
Hickey, Theeuwes, & Kingstone, 2010; Chisholm & Kingstone,
2012; Wu & Spence, 2013), to tasks meant to measure attentional
control (Cain, Prinzmetal, Shimamura, & Landau, 2014; Dye,
Green, & Bavelier, 2009; Focker, Mortazavi, Khoe, Hillyard, &
Bavelier, 2019), or tasks that measure flexible allocation of atten-
tion to objects (Green & Bavelier, 2006b). These instances of
superior performance reflect a greater ability to focus on the task
and important stimuli at hand while ignoring sources of noise,
distractions, or interruptions. For example, using the SSVEP tech-
nique, AVGPs have been observed to better filter out distractors
during perceptually demanding tasks (Krishnan, Kang, Sperling, &
Srinivasan, 2013; Mishra, Zinni, Bavelier, & Hillyard, 2011).
Finally, in the domain of visuospatial cognition, AVGPs have been
found to outperform NVGPs on mental rotation tasks as well as
short-term memory (STM) and working memory tasks using visu-
ospatial stimuli (Blacker & Curby, 2013; Feng, Spence, & Pratt,
2007; Green & Bavelier, 2006b). This work points to action
gaming being associated with more precise and flexible memory
representations.

A recurrent finding in the AVGPs literature is that of enhanced
information processing. Dye et al. (2009) showed that AVGPs
responded about 10% faster than NVGPs across a wide range of
cognitive tasks. This same advantage was seen for tasks where RTs
were very fast (a few hundreds of milliseconds) to those where
responses were relatively slower (RTs on the order of seconds). It
was further shown that these faster RTs did not entail a cost in
terms of task accuracy. Later work used drift-diffusion modeling to
partition the overall RTs into component processes and to examine
which processes were altered in AVGPs. Here, action video game
play was associated primarily with greater evidence accumulation
rates. For example, higher rate of evidence accumulation in
AVGPs has been observed for motion perception and auditory
discrimination (Green, Pouget, & Bavelier, 2010; but see van
Ravenzwaaij, Boekel, Forstmann, Ratcliff, & Wagenmakers,
2014), for contrast sensitivity (Li et al., 2009, critical duration
task), and for top-down attentional mechanisms (Belchior et al.,
2013; Hubert-Wallander, Green, Sugarman, & Bavelier, 2011).
Higher capacity in information processing in AVGPs is also illus-
trated by more precise memory representations, as exemplified by
performance on tasks involving memory for motion (Pavan et al.,
2019; Wilms, Petersen, & Vangkilde, 2013) and memory for color
(Sungur & Boduroglu, 2012). Altogether, this work points to a
rather global advantage in information processing, with AVGPs
extracting information from the environment at a faster rate than
NVGPs, along with showing greater precision of the encoded
memory representations during cognitive tasks.

An unresolved question concerns the breadth of the changes
observed in AVGPs. Thus far, behavioral differences between
AVGPs and NVGPs have been almost exclusively examined in the
context of well-known tasks in cognitive psychology. Yet, whether
this advantage extends to the emotional domain remains largely
unchartered. Chisholm and Kingstone (2015) found that the greater
top-down attentional control abilities of AVGPs extend to visual
search tasks using schematic facial emotional expressions as dis-
tractors. Specifically, AVGPs were better than NVGPs at ignoring
abrupt onset distractors, irrespective of whether the distractor was
a neutral, happy, or inverted face. This result, a replication of
previous work with nonemotional stimuli (Chisholm & Kingstone,
2012), was interpreted as a sign of greater top-down attentional
control (as measured by the ability to ignore distraction) in
AVGPs. However, because facial emotion in this study was always
task-irrelevant, these results are not necessarily informative with
regard to the processing of facial emotions in AVGPs per se.
Bailey and West (2013) studied changes in event-related potential
responses to emotional faces following 10 hr of playing an action
versus a nonaction video game. Participants performed a visual
search task with schematic emotional faces. Their task was to look
for a happy or an angry facial target in an array of neutral
distractors. Ten hours of action video game training resulted in
increased neural responses to both emotional targets (happy and
angry faces) and nonemotional nontargets (neutral faces) in right
frontal and occipito-parietal brain areas compared to nonaction
video game training. While shorter P3 latency at posttest compared
to pretest was observed in action trainees only, there was no visible
impact on behavioral measures and no differences across stimulus
category (i.e., emotional vs. nonemotional). Although certainly not
diagnostic, these few results are in line with the hypothesis of
enhanced information processing that extends from cognitive to
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emotional tasks. In that respect, we may expect similar findings in
the emotional domain as in the cognitive domain - namely a
greater rate of evidence accumulation and higher memory preci-
sion in AVGPs when processing emotional faces.

An alternative prediction, however, comes from a line of re-
search in social psychology, which proposes that repeated expo-
sure to video games with violent content might be associated with
individual differences, or possibly changes in social behavior,
together with increased sensitivity to social cues signaling aggres-
sion and decreased sensitivity to social cues signaling distress.
While the cognitive psychology literature has focused on differ-
entiating games based upon cognitive processing demands, it is
almost certainly the case that individuals who are categorized as
AVGPs have had exposure to different video game content than
individuals categorized as NVGPs. In particular, although violence
is not a necessary characteristic of action games (i.e., there are
nonviolent action video games, such as MarioKart or Splatoon), it
is nonetheless the case that most action video games do contain
violence. Furthermore, because NVGPs (by definition) will have
less total game experience than AVGPs, they will also, necessarily,
have had less total exposure to violent video game content. Thus,
while the AVGPs/NVGPs categorization scheme utilized in cog-
nitive psychology is not a perfect match to the violent/nonviolent
categorization scheme used in social psychology, it is interesting to
also consider the predictions regarding emotional processing aris-
ing from this line of research, as they contrast with the predictions
arising from the cognitive domain.

For instance, the General Aggression Model (GAM) predicts
that exposure to rewarded violence in video games is likely to
increase gamers’ aggressive affect (i.e., hostile feelings), aggres-
sive cognitions (i.e., hostile thoughts), and aggressive behaviors, at
least in the short term (Anderson & Bushman, 2002; Carnagey &
Anderson, 2005), while prosocial games seem to promote proso-
cial behaviors in the short term (Gentile, 2009; Greitemeyer,
Osswald, & Brauer, 2010). In the long-term, the same model
predicts that repeated exposure to media violence may influence
aggressive behavior by promoting aggressive beliefs and reinforc-
ing aggressive expectations and scripts, as well as desensitizing
individuals to aggression. In line with the desensitization view,
some studies have reported reduced amplitudes of brain responses
to pictures depicting violent content among chronic players of
violent video games and in players transiently exposed to violent
video games (Bailey, West, & Anderson, 2011; Bartholow, Bush-
man, & Sestir, 2006; Engelhardt, Bartholow, Kerr, & Bushman,
2011). Another extension of this model proposes that, when acti-
vated, these hostile representations may affect the processing of
perceptual information by creating an attentional (hostility) bias,
which increases the processing of information signaling social
threat. In that view, repeated exposure to violent video games may
influence face perception in real life, as individuals may be more
likely to pay attention to social cues and interpret them negatively
as signaling hostile intentions. At the same time, these hostile
representations are proposed to reduce individuals’ sensitivity to
emotional signals, which have the potential to trigger empathic
responding such as sad, painful, or happy expressions.

Consistent with these ideas, Kirsh, Mounts, and Olczak (2006)
found that individuals who were high in violent media consump-
tion were faster at identifying anger and/or slower at identifying
happiness compared to individuals who were low in violent media

consumption. Similar results were found a few minutes after
playing a violent video game for 15 min (Kirsh & Mounts, 2007).
While these studies document differences in the speed of emotion
processing, others have reported differences in emotion recogni-
tion accuracy as a function of violent video game experience,
looking at a larger range of emotions. Diaz, Wong, Hodgins, Chiu,
and Goghari (2016) found that violent video game players recog-
nized disgusted faces less accurately, and fearful faces more ac-
curately (and also faster) than nonvideo game players. Thus, the
effects of violent video games on emotion processing are likely
subtler than just assuming general blunting. Instead, the model
predicts enhanced anger and possibly other negatively valenced
emotion perception, at the expense of hindered happiness, pain or
sadness perception.

Finally, a third possible prediction comes from the proposal that
the cognitive benefits documented in AVGPs discussed above
arise through a learning mechanism that is common across a
variety of tasks. In this “learning to learn” hypothesis proposed by
Bavelier, Green, Pouget, and Schrater (2012), AVGPs would more
readily learn the particular statistical regularities of the new tasks
and stimuli they are presented with. This would then, in turn,
manifest as AVGPs outperforming NVGPs, and would include
AVGPs exhibiting faster response times or more precise memory
representations. A distinctive feature of this learning to learn view
is that group differences should be the greatest at intermediate
stages of learning, when using stimuli and task configurations that
are rather unfamiliar, such as random dot kinematograms, or the
N-back task. Because differences between AVGPs and NVGPs in
this framework arise due to differences in learning rate, this theory
anticipates that AVGPs are unlikely to outperform NVGPs for
tasks or stimuli that are highly overlearned in adults, such as
categorizing facial emotions.

Here we sought to adjudicate between the three overarching
hypotheses discussed above: enhanced information processing,
GAM, and learning to learn. In a first study (n = 97), we con-
trasted AVGPs and NVGPs as they discriminated static facial
expressions with different intensities of anger, happiness, sadness,
and pain. We applied a drift-diffusion model (DDM) to character-
ize the different stages of decision-making in that emotional task.
A key advantage of DDMs over standard methods is that they
aggregate the complex pattern of RTs and accuracies into a rela-
tively small number of parameters that together capture different
stages of the decision-making process. Another advantage of
DDMs is that they are more sensitive for detecting potential
group-level differences than standard behavioral measures (e.g.,
White, Ratcliff, Vasey, & McKoon, 2010). We can thus ask
whether potential differences in discrimination performance arise
from the rate of evidence accumulation, or from response biases
such as response caution (boundary separation), motor execution
time (nondecision time), or a possible bias in the starting point of
the diffusion process (starting point bias). The enhanced informa-
tion processing view predicts group differences in evidence accu-
mulation for all emotions. In contrast, the GAM predicts higher
evidence accumulation rates and higher starting point bias for
angry expressions, and possibly lower evidence accumulation rates
and lower starting point bias for happiness, sadness, and other
empathy-related emotions such as pain, in AVGPs compared to
NVGPs. Finally, the learning to learn hypothesis predicts no group
differences in any of the aspects of decision-making, given that the
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task decisions involve well-tuned templates for expressions that
have been overlearned. Moreover, as small to medium cross-
sectional differences in lab-based measures of aggression have
been reported by meta-analyses between frequent players of vio-
lent video games and NVGPs (Hilgard, Engelhardt, & Rouder,
2017), a further distinctive feature of this study was to ask whether
the same cross-sectional difference was observed between AVGPs
and NVGPs. To this end, we made use of the Competitive
Reaction-Time task (CRT) task. This is a lab-based paradigm that
has often been used to measure reactive aggression, which has
been shown to correlate with certain dimensions of trait aggression
(Giancola & Zeichner, 1995; but see Ferguson & Rueda, 2009).

In a second study (n = 54), we contrasted the mental represen-
tations that underlie the categorization of facial emotions in an-
other sample of AVGPs and NVGPs using the reverse inference
technique. This technique has its foundation in the well-accepted
finding that facial emotional expressions are typically communi-
cated through complex patterns of muscle movements rather than
just the end-points of facial expressions, which is what is examined
when using static photographs. The reverse inference technique
provides a characterization of the spatial and temporal patterns of
facial muscle activation—also called action units (AUs)—that give
rise to the recognition of dynamic facial expressions signaling
happiness, surprise, fear, anger, disgust, and sadness. Previous
work suggests that this technique is sufficiently sensitive to iden-
tify large-scale differences in experiences. For instance, it has been
previously used to characterize cultural differences in facial emo-
tion representations (Jack, Garrod, Yu, Caldara, & Schyns, 2012).
On this task, to the extent that AVGPs benefit from enhanced
information processing, we would expect group differences, espe-
cially higher fidelity of each emotion representations in AVGPs as
compared to NVGPs. In contrast, the GAM again predicts a
differential view with sharper representations of anger (and pos-
sibly fear and surprise), but more blunted ones for happiness
sadness, and possibly disgust. Finally, if the noted cognitive ad-
vantage of AVGPs was due to learning to learn, the high expertise
of humans in facial emotion recognition predicts equivalent rep-
resentations across groups.

Study 1

Method and Materials

In Study 1, participants completed 2 sessions separated by
several weeks. Sessions were composed of tasks assessing emotion
perception skills. Session 1 (N = 97) included two emotion per-
ception tasks, using sad-to-angry and pain-to-happy morph conti-
nua. Participants discriminated stimuli in a two alternative forced
choice tasks as in (Qiao-Tasserit et al., 2017). Stimuli were pre-
sented in blocks of 240 faces per continuum, 16 identities/contin-
uum, 15 levels/morph continuum, time of presentation 500ms,
without a response time limit (see Figure 1). Participants also
completed the Competitive Reaction Time task, which evaluates
how participants react to unjustified aggression (Whitaker & Bush-
man, 2012), as well as social tests and questionnaires assessing
different aspects of personality (anxiety, depression, aggressive
personality, competitiveness, and empathy), which will be reported
elsewhere (Pichon, Antico, Chanal, Singer, & Bavelier, 2020). At
Session 2, 84 of the original 97 participants returned. Session 2

100% sad

100% pain 15 levels of morph, 16 identities 100% happy

B

500 ms No time limit

500 ms

Face classification task, 240 trials per continuum

Figure 1. Stimuli and protocol used in Study 1. (A) Example of pain-
happy and sad-angry continua used in Session 1. (B) Time course of a trial
for the emotion perception tasks of Sessions 1 and 2. Stimuli were taken
from a database created and maintained by J. Decety and colleagues
(Lamm, Batson, & Decety, 2007); all actors within the database consented
to the use of their image for research purposes and in publications.

included four emotion perception tasks using the same four emo-
tions as in Session 1, but with the discrimination being performed
against neutral expressions.

Sample size. Recent meta-analysis in AVG research has high-
lighted superior performance (d = 0.55) in cross-sectional studies
comparing AVGP and NVGPs in various cognitive and perceptual
tasks (Bediou et al., 2018). Estimation of sample size with G
Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007) comparing two
group means showed that for the design of Study 1 Session 1,
respectively Study 1 Session 2, Ns of 37 and 28 participants per
group were needed to achieve 80% power at 5% significance level
(repeated-measures ANOVA with a 2-levels group factor and a 2
(Session 1) or 4-levels (Session 2) repeated-measures emotion
factor, d = 0.55, correlation r = .35 among repeated measures
based on an independent dataset (n = 160) with the same stimuli).

Participants. The final sample consisted of 47 AVGPs (mean
age = SD 22.3 *= 4.3 years old) and 50 NVGPs (24.2 = 5.1 y.o0.)
at Session 1. At Session 2, 38 AVGPs (22.3 * 4.3 y.0.) and 46
NVGPs, (24.1 £ 5.3 y.o.) returned. All participants were male and
of Caucasian descent. The two groups were roughly matched in
age (at Session 1, #(95) = —2, p = .044; and at Session 2
#(82) = —1.6, p = .1).This study was approved by the ethical
committee of the University of Geneva, which abides by the
Declaration of Helsinki. Subjects received compensation for their
participation. We recruited a total of 104 male subjects. Seven
subjects were excluded due to the following reasons: 3 participants
were erroneously classified as AVGPs or NVGPs at the recruit-
ment stage (see criteria below), 1 participant was an outlier on age
(45 y.o., while the age range of other participants was 18-35 y.o.),
and 3 participants did not comply to instructions, responding
randomly.



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

FACIAL EMOTION PERCEPTION IN ACTION GAME PLAYERS 5

Our laboratory maintains a database of participants populated
via responses from local ads. Some of these ads specifically target
experienced and less experienced video-game players, as numbers
in these extreme categories are otherwise too low to carry out a
well-powered study. Participants are recruited year-round in that
database by a lab assistant. As part of this process, participants fill
out a battery of questionnaires, including questionnaires on leisure
activities (sports practice, music, media habits and video-game
play) and cultural background. A list of participants that matched
the inclusion/exclusion criteria of the present study was generated
from that database. To avoid introducing demand characteristics,
these participants were invited in the study by an experimenter
unrelated to the lab assistant responsible for the database. Further-
more, participants were told that the study aimed to investigate
cross-cultural differences in interpersonal behaviors. The experi-
menters were kept blind to participants’ video-game play status
during the study.

The inclusion/exclusion criteria to be considered an AVGP or an
NVGP were the same as those used in the Bavelier lab in the past.
In order to be classified as an AVGP, an individual would need to
have played at least 5 hr per week of first- or third-shooter video
games in the past year and at most, reported 1-3 hr per week of
play in each of these other game genres: turn-based strategy
games, action-sports games, real-time strategy games, fantasy/role
playing games and music games (i.e., they needed to be what we
refer to as “genre pure” players—only playing action video games
and no other types of games; see Dale & Shawn Green, 2017).
Participants who played 3-5 hr of AVG a week in the past year
were also classified as an AVGP if they played first- or third-
person shooters more than 5 hr a week before the past year. The
criterion to be considered a NVGP was to play at most 1 hr per
week for each game genres listed above and no more than 5 hr total
per week across all game genres in the past year as well as the year
before past. Note that only males were tested because of the
relative scarcity of female AVGPs.

Face stimuli. We used black and white pictures extracted
from a dataset of video clips containing actors expressing pain,
sad, happy and angry facial expressions. This dataset has been
validated for valence and intensity in previous behavioral and
functional neuroimaging studies (Decety, Echols, & Correll, 2010;
Gleichgerrcht & Decety, 2014; Lamm, Batson, & Decety, 2007).
We extracted one frame at the apex of each expression, and
selected expressions recognized above 70% accuracy (chance level
20%) in a 5-AFC discrimination pilot study. For Session 1, we
generated sad and angry composite images from 16 identities (8
female actors), showing either a sad or an angry expression using
the Fantamorph software (Abrosoft Co.). We also generated pain
and happy composite images from the same identities expressing
either a pain or a happy expression. These prototypical images
were used as endpoints to generate, for each identity, morph
sequences with 15 steps, with intermediate images changing in-
crementally from unambiguously sad (respectively pain) to unam-
biguously angry (respectively happy), with emotionally ambigu-
ous images in the middle. A gray mask surrounded each face.
Luminance and contrast were equated for all faces. We used a
similar approach to generate morphed stimuli at Session 2. We
used the same identities to generate four continua composed of
linear morph sequences between a set of neutral expressions and

each of the four emotions used at Session 1. Each continuum was
composed of 15 levels of morphs.

The Competitive Reaction Time task (CRT). The CRT task
is one of the most commonly used measures of laboratory aggres-
sion (McCarthy & Elson, 2018). It is a 25-trial competitive game
that requires participants to respond to a visual cue faster than their
partner (Whitaker & Bushman, 2012). We used the computerized
version of the CRT task (Version 3.4.2). Given that our goal was
to assess whether AVGPs/NVGPs (as defined in the cognitive
psychology literature) differed from one another in the same ways
as has been previously reported for violent/nonviolent game play-
ers (as defined in the social psychology literature), the CRT task
was thus well-suited for these needs. We used the computerized
version of the CRT task developed by Brad Bushman and Scott
Saults (Version 3.4.2, https://uk.groups.yahoo.com/neo/groups/
CRTRP/info).

Participants were told they would be connected via our online
platform to a same-sex opponent from another research institute in
Europe (actually a computer confederate). Before playing each
trial, the player determines the sound intensity and duration of the
noise blast that the opponent would receive in case he loses the
trial. Noise blasts range between 60dB and 105dB (in 5 dB
increments, a 0dB nonaggressive level was also available) and
could last between O and 5s. Unknown to the participant, the
sequence of wins and losses is predetermined. To provoke aggres-
sion from the participant, the first trial ends in a loss for the
participant, who receives a punishing noise blast with intensity and
duration set at maximum. The preprogrammed sequence of won or
lost trials (W/L) was the same for all subjects. We used the
following sequence with the corresponding levels of punishment
intensities and durations set by the opponent: [L-10-10, L-9-10,
W-8-7, W-7-8, L-6-6, W-5-4, L-4-2, L-3-3, W-2-5, W-2-5,
W-4-3, L-3-2, W-5-4, L-6-6, L-8-8, W-9-9, L-7-7, W-7-9,
L-9-8, W-8-6, W-6-7, L-5-5, L-3—4, W-4-3, L-2-2]. Noise
blasts were calibrated by measuring the volume of the headphone
system with a sound level meter (NTI-XL2, with an impulse
measure LAImax and a temporal integration window of 35ms).

Different strategies have been used to quantify aggressive be-
havior from the CRT task (Elson, Mohseni, Breuer, Scharkow, &
Quandt, 2014; Hyatt, Chester, Zeichner, & Miller, 2019). Here we
report the mean volume intensity and mean duration averaged
across all 25 trials separately, which is one of the most frequently
used strategies according to Elson (2017) and has been proposed as
standardized measurement for the CRT task (Ferguson, Smith,
Miller-Stratton, Fritz, & Heinrich, 2008). Among the 97 partici-
pants who completed the CRT task in Session 1, 13 participants (4
AVGPs, 9 NVGPs) expressed suspicions and were excluded from
its analysis (N = 84 total, 43 AVGPs and 41 NVGPs).

Drift-diffusion modeling of facial emotion discrimination.
For each emotional continuum, the distributions of classification
responses and reaction time (RT) was jointly modeled using a
DDM (Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998). The
DDM assumes that evidence is integrated until a decision bound-
ary is reached, at which point a response is generated. Because of
noise in the drift process, stochasticity in RT and in accuracies
emerges even for fixed stimuli. The important parameters of the
DDM are the mean evidence accumulation rate (the rate at which
evidence accumulates toward the decision boundary); the decision
boundary separation (the amount of evidence required to commit


https://uk.groups.yahoo.com/neo/groups/CRTRP/info
https://uk.groups.yahoo.com/neo/groups/CRTRP/info

publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

6 PICHON ET AL.

to one response, which reflects response caution); an additive
component to response time called “non-decision time,” which
reflects all the combined effects on RT that are not due to evidence
accumulation, such as motor planning and execution; and finally a
possible initial bias (i.e., starting point) toward one of the two
response alternatives. The latter parameter captures the fact that
the diffusion process may start closer to one of the two decision
boundaries, which results in faster responses to that alternative, as
well as potentially higher error rates. We provide the code of the
DDM in the online supplementary material.

Previous work (Ratcliff & Tuerlinckx, 2002) has shown that
outliers (trials with unusually fast or slow response times) can bias
the estimation of parameters within the DDM. Hence, we removed
the slowest and fastest 2.5% of trials for each subject and contin-
uum.

We estimated parameters of the DDM using Bayesian inference.
More specifically, we utilized the diffusion model extensions
developed for the JAGS statistical software package (Wabersich &
Vandekerckhove, 2014). Bayesian parameter estimation allows a
posterior distribution over parameter estimates to be obtained, in
contrast to other approaches that yield only a point estimate.
Although it is also possible to develop hierarchical models within
the Bayesian framework (Wiecki, Sofer, & Frank, 2013), for this
application, we adopted a nonhierarchical analysis framework in
which parameters were estimated independently for each partici-
pant.

Code implementing the DDM was implemented in the JAGS
model description language (Plummer, 2003). The model specifies
a prior probability distribution over each of the model parameters,
as well as the likelihood of the observed data given the model and
its parameterization. Markov Chain Monte Carlo (MCMC) is then
used to approximate the Bayesian posterior distribution over pa-
rameter values. In our application we assumed that all model
parameters had flat (uniform) priors over a plausible range of
values. Complete code implementing the model is provided. Pa-
rameters obtained from the analysis were examined at both the
individual level (95% confidence intervals around parameter esti-
mates) and group-level. For group-level analyses, we computed
the posterior mean parameter estimates for each subject, and then
performed standard statistical analyses (ANOVA) on the estimated
subject-level parameters. In our implementation of the DDM, we
assumed that the evidence accumulation rate depended on the
specific morph-value of the visual stimulus. As an intuitive exam-
ple, some images of faces are clearly angry or sad, while others are
more ambiguous. This difference between stimuli is modeled as a
difference in how quickly evidence is accumulated in the diffusion
process. In order to minimize the number of parameters in the
model, we further assumed that the relationship between the stim-
ulus morph value, and the evidence accumulation rate, followed a
power-law relationship:

3(j) = sign(j — w) - k- [j — pl .

In the above, 3(j) indicates the evidence accumulation rate (also
called the drift diffusion rate) for stimulus morph-value j,
indicates the morph value of subjective equality along the contin-
uum (the morph-value which is perceived as intermediate between
the two alternatives), k controls the scaling of the power function,
and v is a scaling exponent which determines the curvature of the
power-law relationship. When vy equals 1, the model reduces to a

linear relationship. A power-law relationship was previously
shown to provide an excellent fit to perceptual decision making in
other domains (Palmer, Huk, & Shadlen, 2005). In summary, this
equation parameterizes the evidence accumulation rate for the 15
morph-values in terms of three underlying parameters. This re-
duces the number of model parameters and avoids potential over-
fitting. We further increased the statistical power of the model by
enforcing that stimuli from all morph values constrain the esti-
mates of the common underlying parameters that are response bias,
boundary separation, and nondecision times. Indeed, and unlike
the accumulation rate, these were held constant across all stimuli
within each emotional continuum.

Data analysis. Parameters of the DDMs (evidence accumula-
tion rates, decision boundaries, nondecision times, response bias)
and the intensity and duration variables from the CRT task were
analyzed with ANOVAs and T-Tests to test for effects of group,
emotion, and morph. Frequentist analyses were complemented
with Bayesian statistics to examine the strength of evidence in
favor or against our main hypotheses about the group level
(AVGP/NVGP). By convention, a Bayes factor (BF,,) > 3, rep-
resents substantial evidence for the alternative hypothesis, while a
Bayes factor (BF,,) < 0.3 represents substantial evidence for the
null hypothesis. Anything between these values expresses weak or
anecdotal evidence (Dienes, 2014).

Results Session 1 (N = 97)

Emotion discrimination task. Group differences in mean
evidence accumulation rates obtained from the DDM were as-
sessed through an omnibus ANOVA (n = 97) carried out with
group (AVGP/NVGP), emotion continuum (pain-happy/sad-
angry), and morph levels (15 levels). As expected, we observed a
main effect of morph level (F(14, 1330) = 1185.4, p < .0001,
Greenhouse-Geisser [GG] corrected p < .0001, nﬁ = 0.84, see
Figure 2, panels A-B), indicating greater evidence accumulation
rates at the extremes of the morph continua. There was no effect of
emotion, F(1,95) = 2.3, p = .13. The only significant interactions,
which survived GG correction, was that of emotion by morph
levels, F(14, 1330) = 80.7, p < .0001, GG corrected p <0.0001,
ms = 0.12, signaling higher evidence accumulation rate at ex-
tremes values of morph for the pain-happy continuum as compared
to the sad-angry continuum.

Importantly, videogame group had no reliable effect as indicated
by a lack of group effect, F(1, 95) = 0.5, p = .5, n; = 0.001,
BF10 = 0.07. Interactions with group, when present in the raw
analyses, did not survive the GG corrections group by-morph,
F(14,1330) = 1.8, p = .032, GG corrected p = .18, 3 = 0.008;
group-by-emotion-by-morph, F(14, 1330) = 2.5, p = .001, GG
corrected p = .08, m3 = 0.004. These nonsignificant group trends
arise from slightly higher evidence accumulation rate at extremes
of the morph levels in AVGPs as compared to NVGPs, especially
in the sad-angry continuum.

In addition to evidence accumulation rate, the DDM also pro-
vides estimates of decision boundary, nondecision time, and re-
sponse bias. Separate ANOVAs for each of these dependent vari-
ables with the factors group and emotion continuum revealed a
main effect of emotion in boundary separation, F(1, 95) = 10.8,
p = .001, 3 = 0.02 and in nondecision time, F(1, 95) = 31, p <
.0001, n3 = 0.06, diagnostic of more cautious responding (mean:
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Figure 2. Results of Study 1: Each column plots psychometric, chronometric, and evidence accumulation rates
for the 15 morph-values. (A) Session 1 data and DDM fit illustrating higher evidence accumulation at the
extremities of the pain-happy as compared to the sad-angry continuum. (B) Session 1 data and DDM fits
illustrating the comparable emotion decision-making skills of AVGPs and NVGPs. (C) Session 2 data and DDM
fits illustrating higher evidence accumulation for pain-neutral and happy-neutral continua as compared to
sad-neutral and angry-neutral continua. (D) Session 2 data and DDM fits illustrating the comparable emotion
decision-making skills of AVGPs and NVGPs. Model fit and empirical means are displayed with error
bars/shaded areas indicating 95% confidence intervals. AVG = action video games; NVG = nonvideo game.
See the online article for the color version of this figure.

1.65 vs. 1.55), and slower motor execution times (0.54 vs. 0.49) in
the sad-angry versus the pain-happy continuum. A main effect of
emotion for response bias, F(1,95) = 11, p = .001, n3 = 0.06 was
also visible (sad-angry: 0.53, happy-pain: 0.51); we note this effect
is difficult to interpret as bias estimates are specific to each
emotion continuum. As with the accumulation rate, these results
are in line with the greater discriminability of the pain-happy as
compared to the sad-angry continuum. More relevant to our aim,
there was yet again no effect of group in boundary separation (p >
.99, BF10 = 0.29), in nondecision time (p > .53, BF10 = 0.6), or
in response bias (p = .06, BF10 = 0.57), nor any interaction
between group and emotion (all ps > 0.14).

The Competitive Reaction Time (CRT) task. As mentioned
above, only nonsuspicious subjects were analyzed (N = 84).
AVGPs inflicted higher levels of aggression intensity than NVGPs
(AVGPs: 5.5 £ 0.34 vs. NVGPs: 4.45 = 0.36, #(82) = 2.14,p =
.035, d = 0.47). This difference remained significant after ac-
counting for auditory discomfort (ANCOVA: F[1, 81] = 4.1,p =
.046, 2 = 0.05), trait anxiety, F(1, 81) = 4.8, p = .03, v} = 0.05,
state anxiety, F(1, 81) = 4.7, p = .03, n; = 0.05, and depression,
F(1, 81) = 4.3, p = .04, n} = 0.05. Duration of noise blasts was
numerically higher in AVGPs compared to NVGPs; however, this

difference was not significant (AVGPs: 5.06 = .31 vs. NVGPs:
4.26 = 0.34, 1(82) = 1.73, p = .09, d = 0.37).

Results Session 2 (N = 84)

In Session 2, participants performed four additional emotion
discrimination tasks with each continuum varying from neutral
faces to our four emotions (pain, happy, fear, sad). We entered
estimated evidence accumulation rates into an ANOVA (n = 84)
with the factors group (AVGP, NVGP), emotion continuum
(neutral-pain, neutral-happy, neutral-fear, neutral-sad), and morph
levels (15 levels). As expected, there was a main effect of morph
level, F(14, 1148) = 1317.7, p < .0001, GG corrected p < .0001,
ng = 0.84. There was also a main effect of emotion, F(3, 246) =
121.3, p < .0001, GG corrected p < .0001, m3 = 0.24, which
reflected higher drift rates in the Neutral-Happy and Neutral-Pain
continua compared with Neutral-Sad and Neutral-Anger, and an
interaction between morph level and emotion, F(42, 3444) =
139.5, p < .0001, GG corrected p < 0.0001, n% = 0.28. Of interest
to our primary goals though, we again found no effect of group
(p = .43, BF10 = 0.59), nor any interaction involving the factor
Group (all ps> > 0.45), suggesting equivalent evidence accumu-
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lation about facial emotions in AVGPs and NVGPs (see Figure 2,
panels C-F).

The boundary, nondecision time and bias parameters were an-
alyzed via separate ANOVAs with the factors group and emotion.
We found a main effect of emotion in boundary separation, F(3,
246) = 29.4, p < .0001, GG corrected p < .0001, ng = .05,
highlighting more cautious responding for the Neutral-Happy
(mean:1.51) and Neutral-Pain continuum (1.58) compared with the
Neutral-Anger (1.40) and Neutral-Sad (1.42) continuum. We also
found an effect of emotion in nondecision time, F(3, 246) = 54.3,
p < .0001, GG corrected p < .0001, 3 = .17, highlighting longer
nondecision times in the Neutral-Sad (0.5) and the Neutral-
Anger (0.47) continuum compared to the Neutral-Pain (0.41) and the
Neutral-Happy (0.41) continuum. We found an effect of emotion in
the bias parameter, F(3, 246) = 3.5, p < .01, GG corrected p <
.02, m3 = .02, highlighting slightly different bias across the four
continua. Importantly, we found again no effects involving the
group factor (all ps > 0.15, all BF10s < 0.56), nor any interaction
between emotion and group (all ps > 0.44) in any of these
parameters.

Discussion

Six different emotion discrimination tasks were used to test the
predicted difference in facial emotion processing between AVGPs
and NVGPs. Contrary to predictions from the “overall better
perception” framework as well as from the GAM framework, we
did not observe any evidence for a faster rate of information
accumulation in AVGPs, nor did any other processing stages of
decision-making differ. Overall, we found highly similar facial
emotion perception performance between the two groups.

The higher intensity in reactive aggression found in AVGPs,
though, is consistent with the higher aggression found in recent
meta-analyses of cross-sectional studies contrasting this same ag-
gression measure in frequent and infrequent players of violent
video games (Hilgard et al., 2017). According to Hilgard et al.
(2017), this cross-sectional effect ranges between d = 0.44 and
d = 0.6, which is similar to the effect size we found in both of our
aggression measures (d = .47 and d = .37, respectively). This
cross-sectional difference is consistent with the fact that our
AVGP categorization scheme at least partly overlaps with the
violent video game categorization scheme.

Note that this cross-sectional difference in aggression between
AVGPs and NVGPs must not be interpreted as causal evidence
that frequent AVG play influences aggression. Evidence that long-
term violent video game play is durably associated with increases
in aggression remains highly controversial (Hilgard et al., 2017;
Kepes, Bushman, & Anderson, 2017; Prescott, Sargent, & Hull,
2018; but see Ferguson, 2015; Kiihn et al., 2018). For instance, a
recent intervention study showed that playing a violent game
(GTA-V) for more than 30 hr over 8 weeks did not cause any
increase in impulsivity, in aggression, in empathy or interpersonal
competencies, in mental health (anxiety and depression) nor any
change in the tasks the authors used to assess executive functions,
compared with an active group who played a social game (The
Sims) or a passive group (Kiihn et al., 2018). Cross-sectional
differences in aggression between users of violent media and video
games might thus reflect influences from other factors that typi-
cally co-occur with video game play. As extensively discussed by

Ferguson and colleagues, family environment, mental health prob-
lems, or personality factors such as competitiveness (Ferguson,
Cruz, et al., 2008; Ferguson, San Miguel, Garza, & Jerabeck, 2012;
Lobel, Engels, Stone, Burk, & Granic, 2017) may influence par-
ticipants’” willingness to play violent games or their willingness to
respond to provocation. The present study cannot speak to this
issue.

Importantly for our aim, our results highlight that despite being
able to detect a small-to-medium effect size in CRT task between
AVGPs and NVGPs, the two groups displayed comparable facial
emotion processing abilities. The null effect of group in terms of
emotion perception thus appears unlikely to be due to a lack of
sensitivity in our approach. Our null finding dovetails with recent
brain imaging reports which found no evidence of reduced func-
tioning in brain networks important for emotion perception and for
evaluating the emotional content of social situations in frequent
users of violent video games (Szycik, Mohammadi, Hake, et al.,
2017; Szycik, Mohammadi, Miinte, & Te Wildt, 2017). Our null
finding, however, contrasts with the proposal of enhanced percep-
tual abilities in AVGPs. Indeed, enhanced perception in AVGPs as
a result of less noisy processing predicts better facial emotion
discrimination, such as in the task used here. To better understand
the robustness of this null finding, Study 2 uses a different ap-
proach, reverse inference, which more directly probes the quality
of perceptual representations, and in this case the mental models
for each of the 6 basic facial emotions.

Study 2

Participants were presented with faces displaying random com-
binations of dynamically animated action units and were asked to
categorize the dynamic facial expressions along the six possible
basic emotions of happiness, fear, surprise, anger, disgust, and
sadness (see Figure 3). Based on the participants’ responses, which
included not only categorization but also intensity judgments, to
2400 dynamic facial stimuli (6 hr of in-laboratory testing per
participant, spread over 2 to 3 sessions), the unique spatiotemporal
patterns of action unit activations associated with each of the six
basic emotions were recovered separately for each participant
(Jack et al., 2012). Using reverse correlation, we then estimated the
internal models of our participants for each of the six basic
emotions and analyzed these as a function of video game group. As
for Study 1, to the extent that AVGPs benefit from enhanced
perception, we could expect more precise emotional representa-
tions in AVGPs than in NVGPs. Yet, the GAM rather predicted a
differential view with sharper representations of anger and possi-
bly fear and surprise, but more blunted ones for happiness, sad-
ness, and possibly disgust. Finally, if the perceptual advantage of
AVGPs was due to their ability to learning to learn, the already
high expertise of humans in facial emotion recognition predicted
little differences across groups.

Sample Size

Estimation of sample size comparing two group means showed
an N of 25 participants per group was needed to achieve 80%
power at 5% significance level (repeated-measures ANOVA with
a 2-levels group factor and a 6-levels repeated-measures emotion
factor, d = 0.55, correlation r = .35 among repeated measures).
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Figure 3. Stimuli used in Study 2. In each trial, a Generative Face Grammar (GFG) platform (Yu et al., 2012)
randomly selects a subset of AUs (red, green, and blue labels), in this case Upper Lid Raiser (AUS), Nose Wrinkler
(AU9), and Upper Lip Raiser (AU10), from a core set of 42 AUs and assigns a random movement to each AU
individually using six temporal parameters: onset latency, acceleration, peak amplitude, peak latency, deceleration,
and offset latency (labels over the red curve). The GFG then combines the randomly activated AUs to produce a
photorealistic facial animation (shown with four snapshots across time). As in Figures 1 and 2, the receiver categorizes
the stimulus as socially meaningful (disgust) and rates the intensity of the perceived emotion (strong) when the
dynamic pattern correlates with their mental representation of that facial expression. Building a relationship between
the dynamic AUs presented in each trial and the receiver’s categorical responses produces a mathematical model of
each dynamic facial expression of emotion. See the online article for the color version of this figure.

Method and Materials

Participants. The final sample included in the analyses con-
sists of 27 AVGPs (mean age = SD 22.81 * 2.69 y.o) and 27
NVGPs (22.96 = 3.66 y.o.), who were similar in age (t < 1,d =
0.05). This study was approved by the ethical committee of the
University of Geneva and that of the University of Wisconsin
(each group includes 18 participants from Geneva and 9 from
Wisconsin), which abide by the Declaration of Helsinki. Subjects
received compensation for their participation.

Recruitment proceeded as in Study 1, with some participants
recruited at the University of Geneva and others at the University
of Wisconsin. Initially, 88 participants were recruited. Based on
previous work showing cultural differences in this task (Jack et al.,
2012), our inclusion/exclusion criteria called for male, Caucasian
participants only (12 AVGPs and 8 NVGPs who were non-
Caucasian had to be excluded) between 18 and 35 years of age
(one 47 years old NVGP was excluded). Video game status was
assessed as in E1. Participants were also selected so that they were
not high media multitaskers, as per the media multitasking inven-

tory (Ophir, Nass, & Wagner, 2009). Four subjects (1 AVGP and
3 NVGPs) who failed to complete the Media Multitasking Inven-
tory (MMI), and 1 AVGP and 1 NVGP whose MMI score were
higher than 6, were excluded. Finally, participants with incomplete
or corrupted data were removed: five subjects (2 AVGPs and 3
NVGPs) who did not complete the 2400 trials of the task; 1 NVGP
who gave the same response throughout the 2400 trials of the task;
1 NVGP whose first analyses steps could not identify all six
emotion categories.

Study procedure. The stimuli and task were identical to Jack
et al. (2012). On each of the 2400 trials (see Figure 3), a facial
animation was shown, consisting of 3 facial muscles (action
units, AU) chosen randomly from a set of 42 possible AUs.
Each AU was animated according to a specific dynamic se-
quence characterized by 6 temporal parameters: onset/peak/ and
offset latency, peak amplitude, acceleration and deceleration as
in Yu, Garrod, and Schyns (2012). After each animation, par-
ticipants were asked to categorize the emotional expression
among 7 possible choices (happy, sad, angry, fearful, surprise,
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disgust, or other), and then to rate its intensity (using a 5-point
scale, with anchors: very weak, weak, medium, strong, very
strong). We used 8 different identities (4 women and 4 men) to
generate random facial gestures by random selection of AUs
and parameters.

Data analysis. Data analysis consisted of reverse correlating
the spatial (42 AUs) and temporal parameters (6 parameters for
each AU, defining the time course) on participants’ responses. The
responses were z-scored for each participant to reduce individual
and identity biases.

First, we extracted spatial and temporal components. Spatial com-
ponents reflect the nonparametric correlation (i.e., Spearman’s rho)
between the presence of a specific AU and a given emotion (e.g., how
much the presence of AU-12 is associated with greater probability of
responding “Happy”), whereas temporal components relate to the six
parameters defining the dynamics of each AU (e.g., whether the peak
amplitude latency correlates with perceived intensity judgment for a
given emotion). In each case, these component matrices were derived
by conducting a multivariate regression analysis and measuring the
semipartial correlation (i.e., the unique contribution in terms of the
variance) of the specific spatial or temporal parameters, after partial-
ing out all other parameters. Next, these component matrices were
used to evaluate (ai) the number of diagnostic units (defined by those
with significant positive correlations), (b) the dissimilarity between
individual emotional models (corresponding to a vector of 42 corre-
lation coefficients for each participant and emotion), and (c) their
clustering into emotions (K-means clustering).

For these various dependent measures (number of diagnostic
AUgs, euclidean distances between models, or confusion matrices),
classical statistical tests, including ANOVAs, T-Tests, or chi-
square tests were used to test for effects of group or/and of
emotion. Classical (i.e., frequentist) statistical analyses were com-
plemented with Bayesian statistics to examine the strength of
evidence in favor or against our main hypotheses on group differ-
ences.

Results

Number of diagnostic AUs (amount of information per
model). Figure 4 shows the mean number of diagnostic AUs for
each emotion per group, or in other words, the number of AUs that
correlated significantly with a given emotion response. Fear was
associated with fewest diagnostic AUs, whereas disgust was asso-
ciated with the greatest number of diagnostic AUs. An ANOVA
with emotion and group as factors indicated an effect of emotion
(F(5,260) = 16.62, p < .001, GG corrected p < .001, 3 = 0.24,
BF10 = 2.30E + 12), but no effect of group and no interaction
(Fs <1, all BF10s < 0.2).

Configuration of AUs (homogeneity of models across
individuals). The interindividual variability of spatial configu-
rations provides an index of the homogeneity of the representa-
tions within each group (AVGPs vs. NVGPs). Thus, smaller dis-
tances indicate greater model similarities across the considered
individuals.

Dissimilarity matrices between individual emotional models
(i.e., one model per emotion and per participants) were com-
puted using euclidean distances, considering AVGPs and
NVGPs separately (Figure 5A). The mean euclidean distance
for each within-emotion model (i.e., diagonal of dissimilarity
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Figure 4. Mean number of diagnostic AUs per emotion. Error bars are
standard deviations (hap = happiness; sur = surprise; fea = fear; dis =
disgust; ang = anger). AVGPs = Action video game players; NVGPs =
nonvideo game players. See the online article for the color version of this
figure.

matrix) and each group, was compared with an omnibus
ANOVA, followed by independent sample 7 tests (Figure 5B).
The ANOVA revealed an overall main effect of emotion (FI[5,
260] = 69.75, p < .001, GG corrected p < .001, mz = 0.57,
BF10 = 8.88E + 43), reflecting smaller distances for happiness
(i.e., more similar models) than for other emotions across all
participants. More relevant to our aim, this analysis revealed no
main effect of group (F < 1, BF10 = 0.162). A significant
group X emotion interaction, F(5, 260) = 2.50, p = .03, GG
corrected p = .04, m; = 0.57, BF10 = 1.13 was found, which
was driven by a pattern of nonsignificant group differences,
with numerically smaller values (i.e., greater homogeneity) in
the NVGP group for both sad and fear expressions (respectively
p = .09, BFI0 = 0.92 and p = .12, BF10 = 0.76), and
numerically, though nonsignificantly, greater homogeneity in
the AVGP group for happiness, anger, disgust, and surprise (all
ps > 0.15, all BF10s < 0.64).

Confusions (quality of models). In order to examine the
distinctiveness of individual emotional models, we performed a
K-means clustering analysis of the euclidean distances between
the emotional models recovered for each participant (Figure
5C), and examined common confusions; that is the percentage
of models that were misclassified as belonging to another
emotion’s cluster (Figure 5D). An ANOVA of the within-
emotion clusters (i.e., the diagonal of the K-means matrix in
Figure 5D) with emotion and group as factors revealed main
effect of emotion (F(5, 260) = 39.71, p < .001, GG corrected
p < .001, mz = 0.43, BF10 = 3.25E + 29), reflecting differ-
ences in classification accuracy across emotions. The effect of
emotion was qualified by a group x emotion interaction, F(5,
260) = 2.74, p = .02, GG corrected p = .05, 3 = 0.05,
BF10 = 2.57. This interaction was driven by AVGPs having
better models of surprise (i.e., fewer confusions, p = .04,
BF10 = 1.71) and a trend toward NVGPs having better models
for anger relative to AVGPs (p = .09, BF10 = 0.90). No other
group difference approached significance (all other ps > 0.16,
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Figure 5. Participants’ emotional models, separately for AVGPs and
NVGPs. (A) Dissimilarity matrices using euclidean distances applied to
the vectors of correlations estimating the relationship between the
presence of a specific AU and participants’ categorical responses (27
participants by 6 emotions). (B) Mean euclidean distance for each
within-emotion models (i.e., mean and SD for the diagonal of dissim-
ilarity matrix displayed in panel A). (C) K-means clustering of indi-
viduals’ emotion models based on euclidean distances. (D) Confusion
matrices based on k-means clustering of euclidean distances (the color
scale here indicates the number of subjects). AVGPs = Action video
game players; NVGPs = nonvideo game players. See the online article
for the color version of this figure.

all BF10s < 0.41). Finally, chi-square analysis confirmed that
the confusion rates did not differ between groups (x*(5) = 2,
p = .8, BF10 = 0.003), providing strong evidence in favor of
the null hypothesis.

Discussion

Study 2 aligns with and extends the results seen in Study 1,
which indicated similar facial emotion representations in
AVGPs and NVGPs. The absence of group effects raises the
question of whether these may have been masked by some of
our experimental choices. For example, the present study used
photorealistic facial animations as stimuli, whose ecological
validity remains unknown. Yet, several studies have shown that
emotional expressions from both static (Dyck et al., 2008) and
dynamic virtual computer-animated avatars (Faita et al., 2015)
are comparable to those from real human emotions in terms of
recognition accuracy and other social judgments, including the
ability to replicate impairments found in clinical populations
(Dyck, Winbeck, Leiberg, Chen, & Mathiak, 2010). Moreover,
this set of stimuli is known to be sufficiently sensitive to reveal
the existence of cultural and individual differences in how
information from faces is extracted in order to make emotional
judgments (Jack & Schyns, 2017). In sum, Study 2 reinforces
the lack of group differences documented in Study 1 when it
comes to facial emotion representations.

General Discussion

In a series of two studies, we investigated whether AVGPs
process static and dynamic emotional stimuli better, similarly,
or worse than NVGPs, using two complementary psychophys-
ical methods that are sensitive to interindividual differences in
emotion perception. In doing so, we contrasted three hypothe-
ses. Less noisy perceptual processing across all domains of
perception in AVGPs predicted that AVGPs would be globally
more accurate at recognizing facial emotions than NVGPs
(Study1), and accordingly display more precise mental models
or templates of facial emotion (Study 2). Our results did not
support either of these predictions. Our results similarly failed
to support the hypothesis, from social theories of media vio-
lence, that AVGPs may display higher sensitivity to anger due
to a learned attention bias for hostile emotions, and/or blunted
processing of emotions signaling distress. We found no evi-
dence for such emotion-specific group differences. Instead, our
results are more in line with the learning to learn hypothesis, or
the proposal that AVGPs should outperform NVGPs due to
higher learning abilities when faced with new information. To
the extent that facial emotion perception is an overlearned
visual function in adults, this view predicted that no group
difference would be observed in either study. However, we note
that predicted nulls in some ways offer less strong support for
a theory than predicted positive results. Thus, future work may
wish to directly contrast overlearned emotional expressions
with emotional content to which participants are naive.

The results reported in both studies do not support heightened
emotional facial processing in AVGPs relative to NVGPs.
Overall, our study contrasts with a growing body of work
showing that AVGPs outperform NVGPs on a variety of per-
ceptual, attentional and cognitive skills (Bediou et al., 2018; but
see Sala, Tatlidil, & Gobet, 2018). Regarding visual processing
in particular, AVGPs have shown superior performance in a
number of perceptual decision making tasks measuring contrast
sensitivity (Li et al., 2009), orientation identification (Bejjanki
et al., 2014; Berard et al., 2015), or motion perception (Green
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