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Abstract
Attention is limited in terms of both capacity (i.e., amount of information attended) and selectivity (i.e., the degree to which non-
attended information is nonetheless processed). One of the seminal theories in the field, load theory, predicts that these two
aspects of attention interact in systematic ways. Specifically, load theory predicts that when the amount of information to attend is
less than the available capacity, spare attention will naturally leak out to unattended items. While load theory has found a great
deal of empirical support, the robustness of the findings has recently been called into question, in particular with respect to the
extent to which the predictions are borne out across different tasks and populations. Here we report tests of perceptual load effects
in two different tasks (change detection and enumeration) and in two populations (adults and 7- to 8-year-old children). Adults’
accuracies did not demonstrate the predicted interaction between the capacity and selection dimensions, whereas children’s
performance, in addition to being overall worse than adults, did show the interaction. The overall lower accuracy of children
was seen to be the result of a larger performance decrement in response to capacity demands, distracting information, and their
interaction. Interestingly, while these results were seen at the level of the two tasks, there was no within-participants correlation
across tasks. Overall, these results suggest that maturation-related changes attenuate the magnitude of distractor effects in
attention, which in turn limits the evidence for interactions between capacity and selection in high-functioning populations.
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Introduction

Selective attention refers to the preferential processing of a
subset of the available information in the environment along
with some concomitant decrease in the processing of the

remaining information (Chun et al., 2011; Treisman &
Gelade, 1980). At least two specific aspects of selective atten-
tion are of particular relevance to the current work. The first
aspect is that selective attention is limited in its capacity. This
is true whether the unit of interest is number of objects, feature
dimensions, spatial locations, or temporal intervals. Only so
much information can receive the benefit of preferential pro-
cessing – an idea inherent in the term “selective.”

The second aspect is that the selection is imperfect.
Consider a task in which participants are presented with five
arrows arranged horizontally and are told that they need to
indicate the direction of the middle arrow as quickly as possi-
ble. Given such a task, participants will consistently respond
more quickly if the four surrounding arrows point in the same
direction as the middle arrow, as compared to if the surround-
ing arrows point in the opposite direction of the middle arrow
(Fan et al., 2002; Rueda et al., 2004). Thus, despite the fact
that the surrounding arrows are completely task irrelevant and
should be unattended, they are clearly not perfectly selected
out (i.e., if they were perfectly selected out, their orientation
wouldn’t influence reaction time). Selective attention is there-
fore considered to be a process that biases the extent to which
certain information is processed, rather than a process that
perfectly selects some information for additional processing
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while fully filtering out the remaining information (Eriksen &
St. James, 1986; Ma & Huang, 2009; Posner & Petersen,
1990; Treisman & Gelade, 1980).

These two aspects of selective attention, capacity limita-
tions and selectivity, have been of significant interest in the
field – in particular the extent to which these aspects are inde-
pendent or if they interact. Load theory, first proposed by
Lavie and colleagues, has strongly argued for the latter
(Lavie et al., 2004; Lavie & Tsal, 1994). Load theory predicts
that irrelevant items are disproportionately likely to be proc-
essed when there are few relevant items present. In essence,
when few relevant items are present, there is otherwise unal-
located attentional capacity, which then unavoidably “spills
over” to irrelevant items. When a large number of relevant
items are present, attentional capacity is saturated and there
is a reduction in the degree to which irrelevant items are proc-
essed (i.e., there is no capacity remaining to spill over to irrel-
evant items).

Investigations into load theory have most commonly
employed a modified visual search paradigm (e.g., Huang-
Pollock, Carr, & Nigg, 2002; Lavie, 1995; Lavie et al.,
2004; Marciano & Yeshurun, 2017; Maylor & Lavie, 1998).
Participants in such a paradigm are asked to search within a
pre-defined number of locations (e.g., within one of eight
possible rings arranged in a circle) for one of two possible
target shapes (e.g., a square or a diamond), and to indicate
which of the two was present in each trial display. The mea-
sure of interest in this task is not simply whether or not the
target shape was found or the speed with which it was found.
Instead, the measure of interest involves an assessment of the
influence of another shape that appears outside of the set of
pre-defined search locations and thus is always task irrelevant.
The irrelevant item can either be the same shape as the target
shape that appears on the given trial (e.g., if the target shape
that is present was a diamond, the irrelevant shape is also a
diamond) or it can be the possible target shape that is not
present on the trial (e.g., if the target shape that is present
was a diamond, the irrelevant shape is a square). Individuals
usually respond more quickly when the target and irrelevant
shape match as compared to when they do not match (i.e.,
there is a compatibility effect). The critical measure with re-
spect to load theory is the extent to which the magnitude of the
compatibility effect differs as a function of the number of
shapes that are present in the possible target locations. On
trials where only the target is present (i.e., the other possible
locations are empty), load theory suggests that there is a great
deal of unallocated attentional capacity, which should then
naturally spill over to processing the irrelevant shape. When
the target and irrelevant shape match, because both are being
strongly processed, this match will greatly speed up reaction
times. When the target and irrelevant shape conflict, again,
because both are being strongly processed, this mismatch will
significantly retard reaction time. The additional processing of

the irrelevant shape therefore serves to increase the magnitude
of the compatibility effect. Conversely, on trials when there
are many shapes present within the possible target locations,
attentional capacity is saturated, leaving no capacity remain-
ing to spill over to the irrelevant shape. With no attentional
resources being devoted to the irrelevant shape, reaction times
are expected to be equivalent regardless of whether that irrel-
evant shape matches or does not match the target shape.
Consistent with perceptual load theory, a substantial number
of empirical papers in the domain have observed such an
outcome, with the magnitude of compatibility effects decreas-
ing with greater amounts of perceptual load in the target task
(e.g., Chen et al., 2008; Green &Bavelier, 2003; Kim, Kim, &
Chun, 2005; Rees, Frith, & Lavie, 1997; Yi, Woodman,
Widders, Marois, & Chun, 2004; for a review, see Murphy,
Groeger, & Greene, 2016).

Despite its clear utility in explaining a number of such
empirical results (Chun et al., 2011), load theory has faced
criticisms. For instance, Marciano and Yeshurun (2017) ex-
amined several of their own studies using a task modeled after
Lavie et al. (2004). In nine experiments from two published
studies using this task, group-level analyses of only two ex-
periments indicated the interaction between targets and
distractors predicted by load theory. Furthermore, when ex-
amining individual participants’ data, it was clear that a mi-
nority of individuals produced patterns corresponding to the
predicted target-distractor interaction. That is, across studies,
fewer than half of participants demonstrated a decrease in
target-load effects when distractor-load was increased.
Instead, individual participants showed all possible combina-
tions of target and distractor effects. Furthermore, average
(i.e., group-level) effects frequently produced an interaction
between targets and distractors opposite to the interaction pre-
dicted by load theory. When following up with a subset of
participants who demonstrated the predicted load effect in an
initial session, these same participants did not consistently
demonstrate the same pattern on subsequent sessions. From
this finding it was suggested that load effects may be reliable
only in certain populations or tasks. Another possible expla-
nation would be that the load effect size is simply much small-
er than previously thought. In the latter case, aggregate statis-
tics could produce canonical load effects while individuals’
noisy estimates would often not conform to this pattern.
Aggregated load effects would reflect a real phenomenon that
is difficult to measure within individuals.

Together the results of Marciano and Yeshurun (2017), in
particular the lack of individual-level load effects and within-
participant reliability, motivate at least three possible lines of
inquiry regarding load theory:

1) Task: Are the effects observed in the load theory literature
idiosyncratic to a certain task or tasks? Are the predictions
of load theory confirmed in novel tasks?
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2) Population: Is the load effect stronger or weaker in differ-
ent populations (e.g., individuals with greater cognitive
control may have an overall lower distractor interference
effect; Kane & Engle, 2003; also see Maylor & Lavie,
1998; Remington, Cartwright-Finch, & Lavie, 2014), po-
tentially causing the calculation of this effect to be
overwhelmed by noise when studying high-performing
populations?

3) Cross-task reliability: If the effect is indeed robust for a
given task and population, are the observed effects task-
specific or do they indicate patterns of processing that are
shared with other tasks (i.e., cross-task correlations in
these effects)?

Although Marciano and Yeshurun (2017) found that
neurotypical young adults do not always demonstrate reliable
load effects, children have uniformly inferior capacity and
selection processes compared to young adults (Cowan,
Nugent, Elliott, Ponomarev, & Saults, 1999; Dye &
Bavelier, 2010; Rueda et al., 2004; Simmering, 2016), and
therefore may be a population in which to test the applicability
of load theory in a wider array of contexts. In this vein,
Huang-Pollock, Carr, and Nigg (2002) provided an early test
of the perceptual load theory of selective attention as it applies
to cognitive development. By comparing young adults' per-
formance to the performance of children of various ages (7–11
years old) on the visual search task described above, they
found that children's response times were slower than adults’
overall, as well as being disproportionately slower in the pres-
ence of salient distractors when set size was low. Such results
could be viewed as being broadly consistent with the idea that
children have reduced selectivity in their allocation of atten-
tion. When set size was high, the effect of distractors on reac-
tion time was essentially identical across all ages of children
and adults. The apparent lack of developmental differences
suggests that, at the high set sizes utilized, attentional capacity
was exhausted in both adults and children. Adding further
nuance still, error rate differences associated with distractor
compatibility decreased with set size. In other words, more
errors were made on incompatible irrelevant shape trials than
on compatible irrelevant shape trials, but this difference was
diminished at higher set sizes (a finding that would be broadly
well-matchedwith load theory). But unlike with reaction time,
the magnitude of this decrease in the difference in error rate
between compatible and incompatible trials did not reliably
decrease with increasing age (i.e., the interaction between set
size and age that was observed in response time was much less
pronounced with accuracy). In all, these findings show that
distractor interference in children was similar to that of adults
at high target loads while being much greater than adults at
low target loads (for convergent evidence of parallels between
adults and children, using event-related potentials responsive
to distractors, see Couperus, 2011).

Here we extended work on attentional development and
load theory beyond the prototypical visual search paradigm,
using two tasks that each incorporated capacity and selection
dimensions of visual attention. We adapted one of these tasks
from one-shot change detection, a common test of visuospatial
short-term memory (Luck & Vogel, 1997; Machizawa &
Driver, 2011; Rouder et al., 2011). In this task participants
briefly saw a display of items followed by a delay period.
After the delay period, a second display of items was present-
ed and participants were asked to identify whether any of the
items in the second display were different to items in the first
display. To the degree that visuospatial short-term memory
relies on attention (Chun, 2011; Cowan, Fristoe, et al.,
2006a; Shipstead et al., 2014), change detection with
distracting stimuli should produce patterns of performance
that are analogous to those of the visual search paradigm of
Lavie (1995). Specifically, increases in the load associated
with targets as well as increases in the load associated with
distractors should each produce diminished performance.
However, increases in the load associated with targets should
decrease the negative effects of increases in the load associat-
ed with distractor information (i.e., there should be an inter-
action between the two dimensions; the greater the amount of
capacity that has to be devoted to target information, the less
that should be unallocated and therefore spill over to distractor
information).

As a first test of our experimental paradigm’s ability to
detect both capacity-related and selection-related changes in
performance, we tested adults on two versions of one-shot
change detection with varying numbers of targets and
distractors (one version required selecting relevant items by
color and detecting shape changes, the other version required
selecting relevant items by shape and detecting color chang-
es). For example, in the shape-change task version, partici-
pants saw an array of shapes and were instructed to attend to
only red items while ignoring items of other colors. The array
was removed for a delay period, after which another array was
presented. One of the targets may have changed in shape or
may not have, while all distractors remained the same.
Participants were expected to have a greater difficulty detect-
ing shape changes with larger numbers of red items than
smaller numbers of red items, and likewise for the number
of distractors. We hypothesized that change detection perfor-
mance should also be affected by an interaction between target
and distractor quantities, as predicted by perceptual load
theory.

We also sought to further qualify these effects by testing the
same participants in an attention task using identical stimuli
and configurations to the shape-based selection task above. To
this end we created a novel enumeration task with categori-
cally distinct distracting items while using the same stimuli
(and the same filtering dimension) as the shape-based selec-
tion change detection. The novel visual enumeration paradigm
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(Miller & Baker, 1968) combined capacity and selection (i.e.,
target-load and distractor-suppression) dimensions while re-
quiring discrete parametric responses (in contrast to the strict-
ly two-alternative forced-choice paradigm of the change-
detection task, or of Huang-Pollock, Carr, and Nigg, 2002).
The use of many possible responses was strongly motivated
by the results ofMarciano and Yeshurun (2017), whose results
suggested the possible utility of paradigms that would allow
errors to be treated parametrically rather than as binary cate-
gories (i.e., where amount of error is informative). By requir-
ing an integer response in estimating the number of briefly
presented targets amidst simultaneously presented distractors,
we were able to estimate not only the presence of errors, but
the magnitude, and thus the parametric increases in processing
error due to the increased numbers of distractors (i.e., in-
creased selection load) and increased numbers of targets
(i.e., increased capacity load).

Additionally, we note that our paradigm differs from pre-
vious enumeration paradigms using distractors. For instance,
in the work by Trick and Pylyshyn (1993) examining enumer-
ation with distractors, the stimuli remained present until a
response was made, and participants were instructed to count
the targets as fast as possible. It was thus the case that errors
were not informative in the way that they are in the current
design.

As is true in the change-detection paradigm, perceptual
load theory predicts that in this enumeration paradigm, both
selection and capacity demands would be associated with
costs to task performance, meaning that increased capacity
load or increased number of distractors would increase enu-
meration estimation error. However, the theory also predicts
that these dimensions would interact. While distractor loads
should increase enumeration error when capacity loads are
small, large capacity loads should be associated with minimal
distractor processing. In this case, large-capacity-load trials
would have lower distractor-load effects than small capacity-
load trials. While null interactions may be difficult to interpret
due to the potential for idiosyncratic effects of specific tasks
(i.e., it is theoretically possible that particular details of task
instantiation preclude load theory-predicted outcomes to
arise), at a minimum such null interactions would fail to sup-
port load theory. In contrast, the presence of the predicted
effects would provide positive evidence for the generality of
load theory.

Experiment 1: Adults

In Experiment 1 we tested the generality of load theory in two
novel change-detection paradigm versions as well as in an
enumeration paradigm. Each of these tasks allowed us to ad-
dress one of our key questions (i.e., whether effects predicted
by load theory would be seen in new tasks). In addition,

reliable effects in these tasks would allow us to test the
within-participant consistency of load effects across task con-
texts. Results from Experiment 1 also guided our choice of
methods in Experiment 2 with children (i.e., testing the gen-
erality of load theory across populations).

Method

All procedures were approved by the research ethics board at
the University of Wisconsin-Madison.

Participants

Thirty-two young adults (mean age=19.4 years, SD = .55,
range = 18.6–20.7; ten female) participated for course credit
at the University of Wisconsin-Madison. Participants were
recruited from Introduction to Psychology courses using an
online participant management system. We did not collect
demographic data, but the course population is primarily
White, with the largest minority group comprising students
of East Asian descent, and is generally middle to upper-
middle class. We further note that in this and subsequent stud-
ies, although we did not explicitly test for color vision defi-
ciencies, (1) our stimuli were not designed to be perceptually
isoluminant and (2) participants completed practice in the
presence of an investigator to ensure comprehension, at which
point an inability to differentiate colors should have become
apparent.

Apparatus

All tasks were presented on 22-in. Dell monitors using
Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) in
MATLAB, running on Dell Optiplex computers.

Procedure

Change detection In a standard change-detection task, a set of
items is briefly presented, removed, and then another set of
items is presented. The first and second sets of items may be
identical, or else non-identical due to the change of one item.
The participant’s goal is to correctly identify whether the first
and second displays were identical or non-identical (Luck &
Vogel, 1997; Rouder et al., 2011). While this task is typically
referred to as a test of visuo-spatial short-term memory, atten-
tional processing is central to many theories of working and
short-term memory. In accordance with this, attention to dis-
play items commonly plays a major role in models of change-
detection task performance (Cowan, 1995; Rouder et al.,
2011). Additionally, unlike in the standard change-detection
task, where all items are potentially relevant (i.e., any item has
the potential to be deleted in the second display), in our ver-
sion, some sub-set of items that were explicitly irrelevant were
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also included in the displays (see Fig. 1A). This in turn should
further implicate attentional processes in task performance.

A 250-ms auditory cue at 800 Hz signaled the start of a
trial. A delay followed, with a duration randomly chosen be-
tween 250 ms and 750 ms. Next the first display was present-
ed for 250 ms. This first display consisted of two, four, or six
target items and zero, two, four, or six distractor items. Stimuli
were presented in an invisible 5-by-5 item grid with location
centers spaced 1.5° apart. Filled locations were chosen at ran-
dom. Each stimulus was approximately 1.8° in height and
width. All targets and distractors were drawn from nameably
different colors (see Supplemental Material, Fig. S3).

Two versions of the task were utilized – a color-change
version and a shape-change version (with the names alluding
to the stimulus dimension along which items could change for
the given task versions). For the color-change version, the
targets were fish and the distractors were circles (within trials,
drawn in non-overlapping color sets). After the first display
disappeared, a blank screen was presented for 1,000 ms. The
second display was then presented until participant response.
This display was identical to the first display on 50% of trials,
while on the other 50% of trials the color of one of the targets
changed. The participants’ task was to indicate whether the
first and second display were identical or different. No explicit
feedback was given to the participants regarding the accuracy
of their response. After response, there was a 500-ms delay
before the next trial started. The shape-change version, using
shapes from Wheeler and Treisman (2002), worked in an
analogous fashion except that the targets were red shapes
and the distractors were non-red shapes. Thus, in 50% of
trials, in the second display the shape of one of the targets
changed. Within a task version (shape/color), the combina-
tions of target number and distractor number were presented
in a pseudorandom fashion (i.e., equal numbers of all combi-
nations were represented) for a total of 192 trials overall.
These trials were preceded by eight practice trials, of small
set sizes, identical to the regular task. In all, each memory task
took approximately 15 min. These two tasks were

counterbalanced to occur either before or after the enumera-
tion task.

Enumeration All stimuli were identical to those used in the
change detection color-change task described above with two
key exceptions: (1) after the first display disappeared, no
probe screen appeared. Instead, a blank screen was presented
and participants were asked to make an enumeration response;
and (2) different numbers of possible targets (1–10) and
distractors (3 or 7) were utilized (see Fig. 1B). Participants
were asked to indicate the number of targets they believed
were present using the numeric keys above the letters on a
standard keyboard (with stickers on the “0,” “-,” and “=” keys
to indicate that they should be pressed for responses of 10, 11,
or 12, respectively). Participants were not told what the range
of possible targets was (although the possible responses lim-
ited the range from 1 to 12) nor were they given feedback
regarding the accuracy of their responses. The combinations
of target number and distractor number were presented in a
pseudorandom fashion (i.e., equal numbers of all combina-
tions were displayed 11 times each) for a total of 220 trials
overall. These trials were preceded by eight practice trials, of
small set sizes, identical to the regular task.

Results

Analysis

The effects predicted by load theory would be evident in
cross-participant patterns of within-participant changes in per-
formance due to changes in stimulus number across target or
distractor dimensions. Linear mixed-effects models, in which
group-level coefficients are estimated in parallel with
participant-level coefficients in a hierarchical structure, are
ideally suited to the estimation of such stimulus-dependent
changes. Errors were first averaged for every combination of
participant, target number, and distractor number, then ana-
lyzed in multilevel linear models predicting the amount of

Fig. 1 Example trials from the two tasks. In the change-detection mem-
ory task (A) participants saw an array of targets [fish] amidst distractors,
and reported whether any of the target colors changed after a short delay.

In the enumeration task (B) participants briefly saw sets of targets [fish]
amidst distractors, and subsequently reported the numbers of targets pres-
ent in the display
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error given the target number and distractor number on each
trial, while accounting for participant-level variation. In this
analysis, main effects indicate differences in error due to
distractor number or target number differences, while holding
each of the other predictors constant. Interactions, meanwhile,
indicate that the effect of one predictor on error changes as the
level of another predictor changes (e.g., a reliable negative
target-distractor interaction would support the prediction of
load theory). All analyses were conducted in R, with linear
multilevel models fit with lme4 package (Bates et al., 2015, p.
4). Random effects were specified using a maximal structure
(Barr et al., 2013). Null hypothesis tests were implemented
with the Kenward-Roger approximation using the R package
pbkrtest (Halekoh & Højsgaard, 2014).

Averaging data cells results in 20 cases for each participant
in enumeration and 12 cases in change detection. Absolute
errors were used in enumeration (e.g., a response of three with
five targets present would be an error magnitude of 2, as
would a response of 7). The largest overestimate for a set size
10 was therefore 2, or a response of 12. This did not appear to
bias parametric estimates of error increases by set size; see
Supplementary Material for analyses of a truncated subset of
data that allowed larger errors. Binary errors were used in
change detection (i.e., percent incorrect trials). We note that
alternative error functions (e.g., A’ for change detection or
squared error for enumeration), did not produce qualitatively
different results.

Response times (RTs) were log-transformed before analy-
sis to ensure normality of residuals (i.e., because RT distribu-
tions are approximately log-normally distributed; Huang, Mo,
& Li, 2012; Limpert & Stahel, 2011). Participants were not
instructed to respond quickly, so RT variation is simply a
reflection of the incidental differences in completing the tasks
under various conditions. Accuracy, not RT, was the primary
measure of interest.

Change detection – combined tasks – adults

We first tested for the overall presence of load effects in the
change-detection tasks (see Fig. S1 for data per combination of
factors). We combined the data from both versions of the task
and estimated the effects of target number, distractor number,
and their interaction. Each of these effects was allowed to vary
by (i.e., interact with) task type, with the two task types being
coded as -0.5 and 0.5 such that lower-order effects not including
task type would be estimated at an intermediate level between
the two task types. In this model the only significant effect
independent of task type was that of target number (b=.057,
F(1,206.0)=209.8, p<.001). The effects of distractor number
and the target × distractor interaction were not significant (both
F<2.4, p>0.1). Of possible interactions with task type, only the
interaction with target was significant (b=-0.024,
F(1,627.8)=10.6, p=.001), with other ps>0.45.

Change detection – color change – adults

The most standard version of array change detection is that of
color changes (Cowan, Naveh-Benjamin, Kilb, & Saults,
2006b; Luck & Vogel, 1997; Simmering, 2012). When testing
the results of only this version of our tasks we found a gener-
ally similar lack of support for load theory as when testing
both versions in a single statistical model.1 In a multilevel
model predicting percent errors with number of targets, num-
ber of distractors, and their interaction, the effect of target was
significant (b=.044, F(1,77.1)=62.51, p<.001). The effects of
distractors and the interaction between targets and distractors
each did not significantly predict errors (both ps>.1).
Similarly, when predicting log RT, only target was reliable
(b=.03, F(1,117.9)=11.88, p<.001; other effects p>.3)

Enumeration filtering – adults

The two versions of the change-detection paradigm demon-
strated a lack of interaction between target number and
distractor number that would be predicted by load theory.
We next tested the predictions of this theory in the enumera-
tion filtering task (see Fig. S2 in the SupplementalMaterial for
data per combination of factors). In multilevel models using
the same predictors as above, the results of this task mirrored
those of the change-detection tasks. Only target number reli-
ably predicted the absolute error of responses (b=.137, F(1,
168.7)=1296.4, p<.001), with all other p>.1. A contrasting
conclusion is reached when predicting log RT using target
number, distractor number, and their interaction, while con-
trolling for participant-level intercepts and slopes. In this case
all three fixed effects are reliable (target number: b=.108, F(1,
62.5)=118.3, p<.001; distractor number: b=.019, F(1,
280.3)=6.2, p=.013; interaction: b= -.003, F(1,475.0)=7.2,
p=.007). This indicates that performance decreases, in the
form of a RT increase, with increasing distractor number and
with increasing target number. However, the negative estimate
for the interaction term indicates that the distractor effect is
diminished at high numbers of targets; this is the prediction of
load theory. The results are qualitatively similar when the
multilevel model is run with raw RTs, although the distractor
main effect is decreased somewhat.

Experiment 1 – Discussion

In two attention-demanding memory tasks and one novel at-
tention task, adults’ performance was only partially congruent
with the core predictions of load theory. Participants’ ability to

1 The same statistical pattern holds for the shape-change version as the color-
change version (see Fig. S1 in the Supplemental Material for a visual compar-
ison). Here we report only the statistical results for color change because that is
the version implemented in Experiment 2 and later included in a combined
model across age groups.
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accurately complete the tasks was not reliably affected by the
number of distractors in any of the three paradigms, nor did
the impact of distractors interact with the number of targets.
Yet, evidence for the interaction between distractor effect and
target load predicted by load theory was evident in the RTs of
the enumeration task. One possible reason for the somewhat
equivocal results from Experiment 1 was that the dimensions
used in these tasks may not be extreme enough to detect per-
ceptual load effects in adults’ accuracy (Eltiti,Wallace, & Fox,
2005; see the question regarding the appropriateness of
participant population in the Introduction). That is, in adults
with high ability levels, the changes in performance due to
increases in the number of distractors or targets is relatively
small, and under these circumstances an interaction between
the target effect and the distractor effect may be difficult to
detect. In particular, distractor-dependent changes in perfor-
mance, which were not uniformly observed, are a necessary
precursor for the predicted interaction.

Experiment 2

The core effect of distractor interference should be more de-
tectable in individuals who are more substantively affected by
capacity and selection loads. In Experiment 2 we thus exam-
ined performance in a cohort of children.

Method

All procedures were approved by the research ethics board at
the University of Wisconsin-Madison.

Participants

Children (n=28; mean age =7.92 years, SD=0.922, range =
7.1–9.5; gender not recorded) were recruited from the
Madison community using a UW-Madison family-volunteer
database. Demographics were not collected, but the commu-
nity from which we sampled is primarily middle to upper-
middle class, non-Hispanic, White, and monolingual
English-speaking. The children participating in Experiment
2 chose from a selection of small toys or books as
compensation.

Apparatus, procedure, and analysis

The remaining details of the method follow Experiment 1 with
a few modifications to be appropriate for children. Due to the
lack of distractor effects in the change-detection task in
Experiment 1, in Experiment 2 we sought to simply detect
and quantify the presence of distractor effects in children’s
change-detection performance. That is, we wanted to test our
assumption that children were indeed more susceptible to

distractor effects than adults (i.e., test the broad question re-
garding the appropriateness of load theory as applied to dif-
ferent populations). However, due to practical time con-
straints, we omitted target manipulations from change detec-
tion in children. Only color changes were tested (targets vs.
distractors indicated by their shape), with the target number
held constant (4) and distractor number varied (0, 2, or 5), with
60 trials total.

The same procedure was used as in Experiment 1 for enu-
meration, but with fewer (126 total) and truncated set sizes
(one to seven targets; zero, three, or six distractors; six trials of
each combination).

Tasks were completed in one session, in a counterbalanced
order with a break in between, which took about 45 min.
Analyses proceeded identically to Experiment 1 insofar as
the tasks overlapped between the two experiments.

Results

Change detection – color change – children

In a multilevel model predicting error percentage using
distractor number, while controlling for participant-level inter-
cepts and slopes, the effect of distractor number was signifi-
cant (b=.018, F(1,26.0)=9.4, p=.005). This provided evidence
that children were susceptible to decreases in accuracy due to
increased numbers of distractors, unlike adults (see Fig. S1 in
the Supplemental Material for data per combination of fac-
tors). This was in contrast, however, to the non-significant
changes in RT (b=.012, F(1,55)=2.1, p=.149).

Enumeration filtering – children

We fit a multilevel model predicting enumeration absolute
error using distractor number, target number, and the interac-
tion between them, while controlling for participant-level in-
tercepts and slopes. In this model all three fixed effects were
reliable (target number: b=.197, F(1, 181.6)=60.1, p<.001;
distractor number: b=.106, F(1, 256.0)=12.7, p<.001; interac-
tion: b = -.013, F(1, 256.0)=4.25, p=.040). As in change de-
tection, errors in the enumeration task were increased by the
number of distractors. This distractor effect was in turn mod-
erated by the number of targets (see Fig. S2 in the
Supplemental Material for data per combination of factors).

The same effect was evident when predicting log-
transformed RT using target number, distractor number, their
interaction, and controlling for absolute error and participant-
level intercepts and slopes. The effects of target number
(b=.145, F(1, 82.6)=77.9, p<.001), distractor number
(b=.082, F(1, 257.9)=27.6, p<.001), and their interaction
(b = -.013, F(1, 242.0)=17.2, p<.001) were each significant.
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Experiment 2 – Discussion

In both change detection and enumeration, children were sen-
sitive to the presence of distractors where adults had not been.
Additionally, the predictions of load theory were borne out in
children’s enumeration errors as well as RTs. Each of these
results indicates stronger support for perceptual load theory in
children than adults.

Additional analyses across experiments

Each of the previous analyses were intended to address the
questions related to the presence of load effects in different
tasks and different populations. These analyses treated each
task and population as independent. However, direct compar-
isons of the populations and tasks may also be informative.
Comparisons of children’s and adults’ behaviors in a single
statistical model provides for direct estimations of age-
independent [main effects] and age-dependent task effects [in-
teractions]. Further, using the random-effects structures esti-
mated with these statistical models, we can test whether par-
ticipants’ behaviors are related across tasks. These two analy-
ses allow us to answer questions regarding appropriate partic-
ipant populations as well as individual differences in load
effects.

Child/adult

Children had more errors overall than adults in both the enu-
meration task (mean difference on matched targets .227; see
Fig. S2, Supplemental Material) and the change-detection task
(mean difference on matched targets 12.2%; see Fig. S1,
Supplemental Material). We contrasted children and adults
on the degree to which their data matched the predictions of
perceptual load theory. Previous work has shown that
throughout child development the effect of perceptual load
decreases, and we would therefore expect that children would
demonstrate a more pronounced decrease in distractor effect
associated with increases in relevant target stimuli (i.e., chil-
dren’s data will conform to the predictions of perceptual load
theory in a more pronounced way than adults’ data).

Child-adult comparisons of change detection

In the change-detection task requiring participants to detect
the change in color of fish cartoons amidst colored circles,
we tested adults and children in the same linear mixed-
effects model (see Fig. 2). Main effects were significant for
age (b= -.104, F(1,86.6)=10.8, p=.002) and distractor number
(b=.017, F(1, 336.7)=12.8, p<.001), but not their interaction
(p=.164), when controlling for target number and individual
variance. Because target number did not vary in children in

this task, we could not include interactions with target num-
bers. This model indicates that children globally perform
worse on this task, and both children and adults performworse
as the number of distractors increases. Because there is no
interaction between age and distractor effect, this model does
not support an understanding of attentional selection maturing
from middle childhood into adulthood. However, this finding
is difficult to interpret. Baseline differences in performance
could be due to confounding factors (e.g., increased attention-
al lapses in children, improved familiarity with similar stimuli
by adulthood). Without including multiple levels of targets
and distractors, and statistically modeling and partialling out
their contributions to performance, it is impossible in this
analysis to de-conflate baseline performance on the task (i.e.,
an intercept) with a target capacity effect (i.e., a slope), and
thus the developmental differences in this task are difficult to
interpret in terms of theoretical import. The statistical disam-
biguation allowed by modeling both slopes and intercepts is
demonstrated in the following task.

Child-adult comparisons of enumeration

As expected, adults made fewer overall errors than children in
both change-detection and enumeration tasks (which could be
considered an intercept, or baseline difference). However, this
effect is statistically overshadowed by the predictive power of
target and distractor load. Children's errors increase faster than
adults with the addition of task-relevant targets as well as the
addition of task-irrelevant distractors. In a multilevel linear
regression model predicting enumeration error while account-
ing for individual variance, significant effects were present for
target number (b=.197, F(1,682.7, p<.001), distractor number
(b=.106, F(1,774.9)=14.0, p<.001), target-distractor

Fig. 2 Fit values of change detection errors. Linear mixed-effects model
fits relating the presence of errors in response to varying stimuli. Shaded
bands indicate 95% confidence intervals (CIs). Target number did not
vary in the children’s task. Distractor range was chosen to demonstrate
full model fits; certain combinations of distractors and age were not spe-
cifically tested. See Fig. S1 in the Supplemental Material for means and
CIs of raw data
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interaction (i.e., the prediction of load theory; b= -.013,
F(1,731.1)=4.5,p=.034), target-age interaction (i.e., children
have larger target effects than adults; b= -.060,
F(1,524.1)=4.9, p=.026), distractor-age interaction (i.e., chil-
dren have larger distractor effects than adults; b= -.089,
F(1,753.4)=8.1, p=.005), and the three-way interaction be-
tween targets, distractors, and age (b=.013, F(1,731.1)=4.3,
p=.039). In fact, in this model, the main effect of age was
the only non-significant predictor (p>.2), indicating that base-
line differences unrelated to distractor or target load (e.g.,
small-set-size errors due to children's lower vigilance) was
not predictive of error magnitude. See Fig. 3 for predicted
values for different age, distractor, and target levels.

The three-way interaction term is evidence for the presence
of an interaction between capacity and selection dimensions of
attention in children but not in adults. In this task children, but
not adults, exhibit patterns of results that would be predicted
by perceptual load theory (Lavie et al., 2004), wherein the
inclusion of distractors decreases performance when target
load is low but not when target load is high.

RTs in the enumeration task followed the same pattern as
the estimation error. In a multilevel model predicting log enu-
meration RT using target number, distractor number, age, all
interactions, and controlling for individual-level variance, on-
ly interaction between age and target number was not reliable
(b= -.036, F(1,183.6)=3.51, p=.063). The effects of target
number (b=.145, F(1,292.9)=83.7, p<.001), distractor number
(b=.082, F(1,770.5)=24.7, p<.001), age (b=-.29,
F(1,133.4)=8.2, p=.005), target-distractor interaction (b=
-.013, F(1,728.2)=15.2, p<.001), distractor-age interaction
(b= -.063, F(1,733.0)=12.2, p<.001), and the three-way inter-
action between targets, distractors, and age (b=.010,
F(1,728.2)=7.9, p=.005) were each significant. RT results

are also not qualitatively different when controlling for errors
(i.e., if assuming that the degree of error independently influ-
ences RT).

Cross-task correlations

We found that each of the tasks was sensitive to performance
differences due to age and certain aspects of stimulus number.
However, the adults’ data in particular did not confirm the
predictions of load theory. To explore this further, we next
tested cross-task individual differences in distractor effects
(in both age groups) and target effects (in adults). A high
correlation between selection effects between both tasks (or
capacity effects between both tasks) would provide compel-
ling evidence for a controlled attention basis for change-
detection task performance; a low correlation would mean that
differences in task demands cause performance scores to rely
on different central processes.

We used the random-effects slopes calculated in the pre-
ceding multilevel models to test the product-moment correla-
tions between the two tasks' measurements of target capacity
and distractor filtering. None of these correlations were sig-
nificant. Distractor effect correlations were negligible for both
children (r(26)=-.15, p>.4, 95% CI=[-.50, .24]) and adults
(r(32)=.04, p>.8, 95% CI=[-.345, .413]), while target correla-
tions for adults were larger but still non-significant given the
sample size (r(26)=.30, p>.1, 95% CI=[-.08, .61]). This anal-
ysis is much less powerful than the mixed models reported
above and a larger sample size would be necessary to claim
support for a complete lack of correlation between measures.
However, it is clear that the two tasks are not measuring iden-
tical attentional abilities, as wewould expect a large amount of
shared variance if they were (e.g., R2 > .5). Instead, even the
largest value in any of the confidence intervals (i.e., .61)
would be associated with a R2=.37. If the true R2 were indeed
0.5, we would have statistical power over .95 to detect this
effect, suggesting that we have sufficient power to convinc-
ingly reject the hypothesis that the two tasks’ target and/or
distractor dimensions are isomorphic. Further work would
be needed to identify the shared dimensionalities of the two
tasks.

General discussion

The overarching predictions of load theory (Lavie et al., 2004;
Lavie & Tsal, 1994) were tested in experiments using working
memory and enumeration paradigms with children and with
adults. The use of multiple tasks within participants, as well as
multiple populations, allowed for an extension of our under-
standing of the conditions under which target and distracting
information interacts in attention. Load theory would predict
that, while increased distracting information does worsen

Fig. 3 Fit values of estimation error. Linear mixed-effects model fits
relating the presence of errors in response to varying stimuli. Shaded
bands indicate 95% confidence intervals (CIs). Target and distractor
ranges were chosen to demonstrate full model fits; certain combinations
of targets, distractors, and age were not specifically tested. See Fig. S2 in
the Supplemental Material for means and CIs of raw data
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performance, there is an interaction with target number such
that an increased number of targets diminishes the effect of
distractors. Adults’ accuracy on change detection and enumer-
ation paradigms was negatively affected by increasing num-
bers of targets, but there was no reliable change in perfor-
mance due to distractor number. A lack of distractor effect is
unlikely to be due to (as load theory would predict) adults’
attention being so utilized by targets that distractors had no
effect. Quite to the contrary, it is much more plausible that the
distractors utilized were simply not distracting enough to ef-
fectively decrease adults’ accuracy. This interpretation is con-
sistent with adults’ patterns of enumeration RTs, which were
systematically affected by both distractor number and target
number, due to the greater sensitivity of RTs as a measure.

In contrast to adults, children’s response times and accura-
cies were affected by both distractor number and target num-
ber, and their performance followed the predictions of load
theory directly. This led to there being significant age-related
differences in the effects of stimulus number on performance.
In fact, in the enumeration paradigm, the only non-significant
predictor of accuracy was age. This is despite the fact that
adults clearly performed better than children. Target number
and distractor number, as well as the various interaction terms
in the model, were sufficient to suppress the statistical effect of
age, indicating that our paradigm accounted for the meaning-
ful age-related variation in selective attention.

Adults uniformly performed better than children. Indeed,
this is not surprising; high-functioning young adults are the
typical population for psychological research, and as such
they act as the baseline group against which age-related or
psychopathology-related differences are assessed. In our re-
sults, the differences between children and adults were fully
explained by the manipulation of targets and distractors in an
attention task. It is all too easy, when making a comparison
between groups (e.g., ages) to reify group-level differences.
For instance, in this study, it would be simple to dismiss the
patterns of performance that distinguish adults and children as
being qualitatively distinct. However, by implementing statis-
tical models that effectively suppress these age-related differ-
ences, we can identify processes as candidates for loci of de-
velopmental change. Here, in the enumeration task, we have
seen that adults and children differ not just in the degree to
which their performance is hindered by increasing target or
distractor information, but the ages also differ in the degree to
which their performance demonstrates the perceptual load
effect.

In fact, as with previous developmental comparisons of the
perceptual load effect (Huang-Pollock et al., 2002, Study 1),
adults differed from children in that the older group’s RTs
were influenced by distractors, while their accuracies were
not. This RT difference was not observed in previous work
using enumeration with distractors (based on visual inspection
of the results of Trick & Pylyshyn, 1993; see especially

Experiment 4). However, in stark contrast to Huang-Pollock
et al. (2002; Study 1), in our paradigms children’s and adults’
accuracy diverged at high target or distractor loads, rather than
starting differently on easy trials and converging on difficult
trials. This indicates that age-related variation in performance
was not systematically due to an unmeasured variable (e.g.,
effort or vigilance).

We have shown that, when comparing adult attention to
that of children aged 7 and 8 years, load theory explains pat-
terns of intra-individual behavior. That is, we have shown that
children are more negatively affected by targets and by
distractors than adults. In addition, children clearly demon-
strated a larger perceptual load effect than adults.
Theoretically important differences weremost directly evident
in the significant interaction between age and perceptual load
effect.

The current extension of load theory to two novel
tasks addresses some criticisms of the theory. Far from
being non-robust and bound to a specific experimental
paradigm, we have shown that children demonstrate
load-dependent decreases in distractor interference in
enumeration. In addition, there is some indication that
the selective attention basis of working memory tasks
may also make performance on these tasks susceptible
to load effects, but the evidence here is inconclusive. In
both of these cases it is clear that children, who are
generally more susceptible to distractor interference,
demonstrate more robust distractor-related performance
decrements than adults. These distractor effects are a
necessary component of load theory, and tasks for high-
functioning adults may have difficulty demonstrating
load effects if they do not include sufficiently effective
distractors.

Despite the presence of some explanatory power of the
perceptual load effect in our novel experimental paradigms,
there was a surprising lack of relations between performances
on our two tasks. Many individual-differences studies have
found evidence for individual-level covariation between
working memory and selective attention (Machizawa &
Driver, 2011; Miyake et al., 2001; Unsworth & Spillers,
2010). This has been interpreted as evidence for a common
underlying processing ability. Indeed, theories of working
memory emphasize its attention-based nature (Cowan, 1995;
Kane et al., 2001; Postle, 2015; Shipstead et al., 2014). In
contrast to these theoretical predictions that components of
performance (i.e., due to target loads or distractor loads)
should be shared across the tasks in our experiments, we
found no evidence for a common processing ability.
Although the lack of cross-task correlation mirrors the lack
of intra-individual reliability found by Marciano and
Yeshurun (2017), the null result is challenging to interpret.
The patterns of performance in the enumeration task were
likely reliable enough to detect individual differences, as each
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model coefficient had a median split-half correlation of over
.4.2 However, the effects of targets, distractors, and their inter-
actions are clearly not equivalent within individuals and
across tasks.

One possible reason for a lack of participant-level variation
across tasks would be a dissociation between distractor ef-
fects. Although theories of working memory emphasize links
between attention to and maintenance of information, it is
possible that sources of load differ across timescales of pro-
cessing (i.e., memory load as opposed to perceptual load;
Lavie et al., 2004). In this case the variations in stimulus
number across the two tasks presented here may have loaded
on distinct processes. While this was not our expectation,
given the attention-based nature of selection in both tasks,
the possibility cannot be ruled out given our data.

As noted in the Introduction, our tasks were just two of a
theoretically infinite number of tasks that could be designed to
test the predictions of load theory. Our argument is thus not
that these “answer” any particular question or confirm or fal-
sify load theory. Instead we suggest that, by utilizing a broader
set of tasks and outcomemeasures, it will allow for refinement
of load theory by identifying both places where the theory is
broadly consistent with human behavior as well as potential
areas where behavior differs from the predictions of load the-
ory. For example, while we tested one dimension of
participant-level variability (age-groups), there is a host of
other potential individual difference measures that might be
predictive of behavior that does or does not correspond to load
theory (e.g., measures of ADHD or trait anxiety; Murphy
et al., 2016). Future work may benefit from exploring the
relations in load effects across tasks in the context of individ-
ual difference factors that might predict attentionally linked
attributes. Furthermore, although we tested both children and
adults, all participants were drawn from largely White and
middle-class populations with access to the University, there-
by potentially truncating the variance in our inter-individual
measures.

A second broad vein of future work could focus on
factors inherent in the task. Indeed, just within our basic
tasks, there is a potentially rich set of alternative versions
(e.g., switching targets and distractors; increasing the
distracting nature of distractors; etc.) that could speak
to main ideas in load theory. Finally, another interesting
future direction is to examine how predictions of load
theory interact with participant learning. For example,
in our task low error rates on easy trials as well as par-
ticipants’ verbal indication of understanding indicated

their ability to complete tasks without feedback. If feed-
back had instead been presented, it is possible that par-
ticipants may have learned and further improved their
performance over the course of a given task. In fact,
learning of stimulus features and task structures (e.g.,
color sets, timing) may have influenced participants’ per-
formance even without feedback. Questions of learning
and feedback influencing load effects within attention
and memory are beyond the scope of the current work,
but individual differences and developmental differences
imply the possibility for learning-related changes in se-
lective attention as well.

Finally, we emphasize that our intent with experimental
design and analyses was to speak to load theory specifically.
However, there are other theories of attention (i.e., beyond
load theory) that may make (in some cases alternative) predic-
tions regarding expected behavior given our task manipula-
tions (e.g., Biggs & Gibson, 2010; Bundesen et al., 2005;
Torralbo et al., 2010). For instance, some theories of attention
posit a beneficial role of attention to distractors (e.g.,
Makovski, 2019), which could lead to the opposite prediction
to that of the current work.We believe that our reported results
should be sufficiently transparent that theymay also be used to
inform other theories as readers may see fit.

Conclusions

In experiments with adults and with children, we demonstrat-
ed the presence and the limitations of perceptual load theory.
While developmental change was explained by this theory, it
was apparent that adults were not challenged enough by our
novel tasks for their accuracy to be systematically affected by
distracting information. In contrast, children’s performance
(as measured by both RT and accuracy) was worse in the
presence of many distractors when compared to few
distractors, which then allowed for the moderation of this
effect by target number to be evident. Target selection (i.e.,
distractor suppression) and accuracy each improve from child-
hood to adulthood, and these improvements attenuate the in-
teractions predicted by load theory.
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