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Individuals track probabilities, such as associations between events in their environments, but less is known
about the degree to which experience—within a learning session and over development—influences people’s
use of incoming probabilistic information to guide behavior in real time. In two experiments, children
(4–11 years) and adults searched for rewards hidden in locations with predetermined probabilities. In Experi-
ment 1, children (n = 42) and adults (n = 32) changed strategies to maximize reward receipt over time.
However, adults demonstrated greater strategy change efficiency. Making the predetermined probabilities
more difficult to learn (Experiment 2) delayed effective strategy change for children (n = 39) and adults
(n = 33). Taken together, these data characterize how children and adults alike react flexibly and change
behavior according to incoming information.

Individuals learn to understand associations in their
environments by attending to probabilistic informa-
tion (Gopnik & Wellman, 2012). Extant research
indicates that both children and adults track proba-
bilistic information across many situations (e.g.,
Denison, Bonawitz, Gopnik, & Griffiths, 2013; Saf-
fran, Aslin, & Newport, 1996; Xu & Garcia, 2008).
For example, a child might notice that certain
actions are highly associated with making friends
(e.g., sharing), whereas other actions are less likely
to foster friendships (e.g., being bossy). Less is
known, however, about the processes whereby indi-
viduals use their experience with probabilistic infor-
mation to organize behavior in real time. We
explored the influence of experience on probability
learning within two time frames: (a) over the course
of an experimental session and (b) across a wide
age range (in order to assess accumulated experi-
ence over development).

Probability Learning in Children

Attention to probabilistic information is evident
beginning in infancy (e.g., Duffy, Huttenlocher, &
Crawford, 2006; Saffran et al., 1996). For example,
when 7- to 8-month-old infants watched an experi-
menter pull a series of balls from a box that they saw
contained many more red than white balls (e.g., 70
red and 5 white), they looked longer when the exper-
imenter drew a series of white balls compared to a
series of red balls (Xu & Garcia, 2008). Such data pre-
sumably reflect infants’ understanding that the
results were not representative of the colors dis-
tributed throughout the box. Preschool-age children
also attend to the probability distribution of a sample
when making inferences. In one instance (Denison
et al., 2013), preschoolers saw that one block from a
collection of colored blocks (e.g., 20 red, 5 blue) made
a toy light up and play music. Children’s guesses
regarding which color block activated the toy
reflected the distribution of red and blue blocks.

In addition to awareness and tracking of probabil-
ities, young children can also use such information
to guide their own behavior. For example, 24-month-
olds who observed that one object was highly likely
to produce lights and music while another object
was less likely to produce lights and music, selected
the former object over the latter when given a choice
(Waismeyer, Meltzoff, & Gopnik, 2015). In another
study (Kushnir, Xu, & Wellman, 2010), preschoolers
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used probability information to respond appropri-
ately to an agent’s request for a toy: Those who had
previously seen the agent select the least frequent
kind of toy from a box later provided that kind of
toy to the agent; those who had previously seen the
agent select the most frequent kind of toy from a box
showed no preference when later selecting a toy for
the agent. These demonstrations give us clues about
how children come to learn about and act on their
environments based on probabilistic information.

As these examples illustrate, research on chil-
dren’s attention to and use of probabilistic informa-
tion has provided insights into the robustness of
these abilities in young children. However, much of
the extant research on children’s probability learn-
ing, including the studies described above, has been
limited to tasks in which participants acquire all rel-
evant information prior to acting themselves (excep-
tions described in subsequent section). For instance,
in the aforementioned study by Waismeyer et al.
(2015), participants saw the high- and low-probabil-
ity objects produce outcomes before they were pre-
sented with a choice of objects to manipulate
themselves. Yet in children’s daily lives, they must
often distill incomplete or partial information from
a fluid environment—initially with few exemplars
—and use that information to guide their decisions
and actions over time. Additionally, many methods
used to assess probability learning in children are
designed for young children. Less research has been
done using methods that compare across age
groups, and researchers have traditionally focused
on a narrow range of ages. Therefore, while we see
evidence of probability learning in young children,
it is not clear whether the approaches young chil-
dren use in this learning process are similar to
those used by more mature individuals, nor is it
clear whether children’s approaches are stable or
change across development.

Measurement of Probability Learning

To better understand children’s use of accumu-
lating experience over time and development, we
created a probability learning task. Probability
learning tasks feature probabilistic information that
is revealed to the participant over the course of
many trials. In the simplest version of a probability
learning task, the participant is repeatedly asked to
make a choice between two options with one of the
two options being rewarded more frequently than
the other (e.g., Option 1 is rewarded on 65% of tri-
als and Option 2 is rewarded on 35% of trials). The
participant is not made explicitly aware of these

underlying probabilities and thus must use the
observed outcomes in order to make effective
choices on subsequent trials. Data from these tasks
are typically considered as the aggregated behavior
of an individual over the entirety of the experiment.
Thus, previous research has not been able to inform
our understanding of whether individuals change
their use of incoming information to improve
behavior as they gain experience.

Using data averaged across trials, researchers
have identified two types of strategies individuals
use in these probability learning tasks: “probability
matching” and “maximizing” (Vulkan, 2000).
Under a probability matching strategy, participants
select options in proportion to the probability that
those options will be rewarded. Thus, in the exam-
ple highlighted in the previous paragraph, a partici-
pant exhibiting matching would select Option 1 on
approximately 65% of trials and Option 2 on 35%
of trials. In contrast, a maximizing strategy would
result in participants primarily selecting the option
with the higher probability of reward. In the same
example, a participant exhibiting maximizing
would nearly always select Option 1.

Across myriad variations in task structure and
even across species, participants most frequently
exhibit matching behavior in probability learning
tasks (Vulkan, 2000), with some exceptions noted
below. Such behavior is paradoxical because match-
ing results in less reward receipt than maximizing.
This is because participants cannot know when a
given location or response option will be rewarded,
even if they are cognizant of the overall reward
rate. In the example above, if a participant com-
pleted 100 trials, percent accuracy using a matching
strategy would be approximately 55%: 0.65 9 0.65
(percent of time Option 1 is chosen 9 percent of
time Option 1 is correct) + 0.35 9 0.35 (percent of
time Option 2 is chosen 9 percent of time Option 2
is correct). However, a participant’s percent accu-
racy using a maximizing strategy would be 65%:
1.0 9 0.65 (percent of time Option 1 is cho-
sen 9 percent of time Option 1 is correct).

Developmental Differences in Probability Learning

In contrast to the research described earlier with
infants and young children, probability learning
tasks allow for direct comparison across ages. How-
ever, the probability learning task literature contains
conflicting reports of developmental differences, in
particular with regard to matching versus maximiz-
ing. A number of studies have found that school-age
children demonstrate rates of matching similar to
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adults and that younger children (ages 3–5 years)
demonstrate maximizing more so than older children
(e.g., Brackbill & Bravos, 1962; Derks & Paclisanu,
1967). Yet other researchers have found that adults
maximize rewards more effectively than children
(Moran & McCullers, 1979). Perhaps the develop-
mental differences (or lack thereof) are not clear
because these past studies have averaged behavior
across the experimental session. Therefore, while
research employing standard probability learning
tasks differs from those reported earlier (in which
children acquire all relevant probabilistic information
before acting), they still do not measure continuous
behavior change. Rather than characterizing devel-
opmental differences in terms of overall average
behavior, our experiment aims to understand how
individuals use incoming information to direct
behavior over time. In doing so, we address two sig-
nificant gaps in the literature: (a) assessing continu-
ous behavior change and (b) elucidating
developmental differences.

Present Research

Using an analytic approach that allows for con-
tinuous measurement of behavior on a probability
learning task, we can begin to understand whether
accumulating more information about underlying
probabilistic structure in an environment influences
behavior over time. Additionally, by including a
wide age range of children and adults, we can
assess the role of accumulated experience over
development and examine whether probability
learning abilities change across childhood and into
adulthood. As individuals gain more experience in
the world—and encounter situations in which they
must monitor associations between actions and
events—are they better able to use probabilistic
information to direct behavior change in real time?

Participants completed a task where they were
presented with multiple options that were
rewarded with different probabilities. We recorded
participants’ choices throughout the experimental
session and then assessed participants’ patterns of
choices. Because previous studies have traditionally
averaged participant behavior across trial blocks, it
was unclear whether individuals would change
behavior within a single experimental session and if
so, what patterns of behavior would emerge. How-
ever, based on theories of probability learning, if
behavior change was captured within the experi-
mental session, we expected early behavior to be
consistent with probability matching, but later
behavior to be progressively consistent with

maximizing. This prediction was based on the pre-
mise that matching reflects expectations individuals
have at the start of an experiment (i.e., the expecta-
tion that outcomes are not generated randomly;
Green, Benson, Kersten, & Schrater, 2010) and that
matching allows participants to sample multiple
options (Denison et al., 2013). However, a matching
strategy garners fewer rewards than a maximizing
strategy. Consequently, we expected that individu-
als would turn to maximizing once they had
explored other options. Additionally, we suspect
that the paradoxical findings in previous research
that individuals match instead of maximize reflect
that the amount of matching individuals demon-
strate early in the experiment outweighs maximiz-
ing behavior later in the experiment, thus
influencing the average across trials. Again, we aim
to present a fine-grained evaluation of behavior in
order to shed light on this possibility.

While previous research has demonstrated effi-
cacy of probability learning in young children, it
is unclear how this might translate across child-
hood and compare to probability learning in
adulthood. If more mature individuals have
gained efficiency through more experience with
various types of probabilistic learning environ-
ments, we might expect them to demonstrate
greater proficiency than young children. Yet, it is
unclear whether there should be developmental
differences in ability to change behavior over time,
pattern of change over time, and/or timing to
change behavior over time. Disentangling not only
whether there are developmental differences, but
also the nature of those differences, will inform
our understanding of how individuals of various
ages integrate information in their environments
over time.

Experiment 1

In Experiment 1, children and adults searched for a
reward that was hidden behind one of multiple
locations depicted on a computer screen. The prob-
ability of obtaining a reward differed by location,
as described below.

Method

Participants

The sample included 42 children and 32 young
adults (recruited May 2013–March 2015). We tested
a wide age range of children to examine potential
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differences, not only between children and adults
but also across childhood. Children were recruited
from a registry of families who had previously
expressed interest in participating in research and
were from the community in a large Midwestern
city. Adults were undergraduates who participated
for course credit (at a large Midwestern university)
or members of the community recruited via word
of mouth from the same community. The Institu-
tional Review Board approved the research. Adult
participants and parents of child participants gave
informed consent. Children who were 11 years of
age gave written assent, and younger children gave
verbal assent. Parents received $20 for their time
and children chose a prize for their participation.
Adults who were not participating for course credit
received $20.

Procedure

The experimenter told participants they would
play a computer game in which an elf hid coins
behind rocks. She then explained that the goal was
to find as many coins as possible during the game,
and that any one of eight rock locations could be
chosen on each trial. On two practice trials, partici-
pants either (a) found the coin and received points
or (b) failed to find the coin and received no points.
In order to motivate the children to make effective
choices, the children were told that if they found
enough coins, they would get to choose from prizes

on a shelf they saw as they entered the laboratory.
Regardless of whether the participant’s choice was
correct, the actual location of the coin was revealed
on each trial.

Following the practice phase, participants began
the test trials. There were two blocks of 100 trials,
separated by a break. On each test trial, eight
rocks were displayed with equal spacing along a
horizontal line on the computer screen (Figure 1,
top). When participants selected the correct loca-
tion on a trial, a coin appeared in place of the
rock they selected (Figure 1, bottom left). When
participants selected an incorrect location on a
trial, a red “x” appeared in the chosen location
and the coin was revealed in the correct location
(Figure 1, bottom right). From left to right, the fol-
lowing probabilities defined the likelihood of a
coin appearing at each rock location on any given
trial: 0%–0%–5%–10%–70%–10%–5%–0% (Figure 2;
calculation of reward receipt for matching and
maximizing is provided in the Supporting Infor-
mation). To ensure all participants’ experiences
were statistically equivalent, the outcomes were
predetermined to ensure a match to the location
probabilities across the trial blocks (i.e., in each
100 trial block, Rock 5 would be rewarded on
exactly 70 trials, Rocks 4 and 6 would be
rewarded on exactly 10 trials, etc.). These proba-
bilities were not made directly known to the par-
ticipants; the probabilities had to be learned via
experience with the task.

Figure 1. Schematic of the experimental display. Display prior to participant choice (top), and following a correct (bottom left) or incor-
rect (bottom right) participant choice. [Color figure can be viewed at wileyonlinelibrary.com]
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Scoring and Analyses

We assessed the extent to which individual par-
ticipant choices were best captured by one of four

different possible models of choice behavior. In
brief, the first was a random choice model, in which
there was an equal and constant probability of the
participant selecting each of the eight options. This
model assumed participants sampled without a
consistent strategy and served as a baseline against
which evidence-based models could be compared.
The second model was a probability matching model.
Here participants were expected to choose each
option in proportion to the probability that each
location had been observed to be correct up to the
current trial (Figure 3A). The third model was a
maximizing model (Figure 3B). Under this model,
participants were expected to choose the option that
had been observed to have highest probability of
reward up to the current trial. The final model was
a time-evolving combination model, which combined
the previous two models. Parameters and fitting

Figure 2. Distribution of rewards by location for Experiment 1.
Participants were not shown the explicit probabilities. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 3. Modeling participant behavior. (A) The pure probability matching model predicts that participants would choose locations in pro-
portion to the probability that those locations had been previously observed to be correct. Colored lines represent number of choices at each
rock location during the task with the green line indicating choices for the peak location. (B) The pure maximizing model predicts that partici-
pants will always choose the location that had been correct the most often across the experiment. (C) We predicted that participants would use
a mixture of these types of strategies. Early in the experiment, they would choose locations roughly in proportion to the probability the rocks
had been correct, but later largely only choose the location that had the highest overall probability of being correct. (D) Plotting the difference
between choice proportions and the expectations of probability matching, it is clear that these choices were initially largely consistent with
matching (all differences near zero), but over time the participant began to disproportionately choose the location with the highest probability
of being correct. Note that the depiction by trial block is for illustration purposes only—data analysis conducted as described in the text.
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information for all four models are described in the
Supporting Information.

In order to quantify combination model behav-
ior, we calculated two measures that together cap-
ture the main points of interest in the model: (a) the
crossover trial in which the participant’s behavior
deviated from being better described as matching
to being better described as maximizing (referred to
as the “time to crossover” for the remainder of the
article) and (b) the extent to which the participant
maximized at the end of the task (which captures
how much more often they chose the most fre-
quently rewarded location than would be expected
by the probability matching only model).

Figure 3C depicts a hypothetical participant
whose choices are most consistent with probability
matching over the first 100 trials. Figure 3D reflects
that this participant shows a very small difference
between the proportion of choices made and the
expectations given by probability matching. How-
ever, during the second half of the experiment, the
participant’s choices increasingly deviate from
matching-like behavior toward choice behavior con-
sistent with maximizing. That is, with time, the par-
ticipant chooses the most frequently rewarded
location disproportionately more often compared to
the location’s probability of being correct, and even-
tually, the participant exclusively chooses this peak
location. The combination model (Figure 4) thus
models behavior as initially primarily matching (i.e.,
the mixture is dominated by the probability match-
ing model) and then progressively moves toward
pure maximizing (i.e., the mixture is dominated by
the maximizing model). If the participant in Figure 3
had started to crossover to maximizing earlier during

the course of the experiment (Figure 5A), the model
would capture this as a change in the time to cross-
over (earlier crossover; Figure 5B). If, on the other
hand, the participant never quite crossed over to
pure maximizing behavior (i.e., still occasionally
chose rocks other than the “peak” rock, but less fre-
quently than would be expected by probability
matching; Figure 5C), the model would capture this
as a change in final maximizing (Figure 5D).

Results

Thirty-one children completed 200 trials; 11 chil-
dren terminated the study after 100 trials. Due to
those who only completed 100 trials not having
equivalent opportunity as those who completed 200
trials, they were excluded from all analyses. The
final sample included 31 children (18 males;
Mage = 7.71, SDage = 1.99; 84% White) and 32
young adults (13 males; Mage = 20.47, SDage = 1.74;
53% White [12 did not report race]).

Characterizing Responses

Consistent with our hypothesis, the majority of
participants demonstrated a change in choice behav-
ior over time. Of the 31 children and 32 adults
tested, 23 (74%) children and 26 (81%) adults were
best fit by the combination model. These partici-
pants exhibited primarily matching behavior at the
outset of the experiment and then crossed over to
primarily maximizing later in the experiment. All
participants who did not crossover from matching
to maximizing (26% of children, 19% of adults) were
best fit by the probability matching only model,

Figure 4. Model fit for example participant in Figure 3—marking the time to “crossover” and the final maximizing.
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suggesting that these participants were indeed sen-
sitive to the underlying probabilities and were
choosing locations according to this information
(model fits provided in Appendix).

No difference was observed between the propor-
tion of children and adults who were best fit by the
combination model, 73% versus 81%, respectively;
v2(1) = 0.14, p = .71. Thus, children and adults
showed a similar pattern of behavior change over
time. We next examined whether there were age
differences in the rate of strategy change.

Time to Crossover From Matching to Maximizing

To assess timing of behavior change, we regressed
the trial at which participants crossed over on age
group (children vs. adults). Children crossed over
later than adults (M = 82.61, SD = 53.19 vs.
M = 52.85, SD = 38.24, respectively); b = �29.76,

R2 = .10, F(1, 47) = 5.14, p = .03 (Figure 6). To exam-
ine differences in time to crossover across develop-
ment in children only, we used a linear regression,
regressing the trial at which participants crossed over
from matching to maximizing on age (continuous)
for children. The relation between age and time to
crossover in children was not significant, b = 6.23,
R2 = .05, F(1, 21) = 1.06, p = .31. Given our particular
interest in developmental differences, additional
analyses were conducted to test for age-related
changes within the child sample. These additional
analyses can be found in the Supporting Information,
but consistently showed no relation between age and
time to crossover.

Maximizing

Finally, we investigated the extent to which par-
ticipants maximized at the conclusion of the

Figure 5. As in Figure 3, colored lines represent number of choices at each location during the task. The green line indicates choices for
the peak location. (A) If the same participant plotted in Figure 4 had started to deviate from pure probability matching earlier in the
experiment (e.g., in this case exceeding those predictions as early as Trial 60), this would be captured by the model as an earlier time to
crossover, but no change in final maximizing. (B) This is seen in the combination model fit, where the time to crossover is lower than
in Figure 4 (Trial 74 vs. Trial 102), but the final maximizing is identical in both (full maximizing). (C) If instead, the same participant
plotted in Figure 4 did not truly maximize at the conclusion of the experiment (i.e., continued to sometimes choose options other than
the peak location) but still made choices to the peak location more often than would be predicted by pure probability matching (e.g., in
this case 90% of choices to the peak location rather than 70% of choices), this would be captured by the model as a change in the final
maximizing. (D) This is seen in the combination model fit, where the time to crossover is the same as was seen in Figure 4, but the final
maximizing is lower here (maximizing here = 85%, rather than 100% in Figure 4).
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experiment (again, only for participants whose data
were best fit by the combination model). As dis-
cussed earlier, all participants who were best fit by
the combination model crossed over from matching
to maximizing at the conclusion of the experiment.
However, there was some variation in maximizing.
For example, some participants exclusively chose
the peak location (i.e., “pure maximizing”), whereas
others continued to sample other locations, albeit
rarely and much less often than would be expected
by a pure probability matching strategy. To test
whether a later crossover to maximizing predicted
lesser maximizing at the end of the experiment, we
regressed maximizing on age group. Although chil-
dren crossed over to maximizing later than adults
did, children were maximizing to the same extent
as adults at the conclusion of the experiment, a
score of 1.0 would indicate exclusively choosing the
peak location; children: M = 0.92, SD = 0.12 versus
adults: M = 0.95, SD = 0.10; b = 0.02, R2 = .01, F(1,
47) = 0.59, p = .45. Again, there was no relation
between age and maximizing within the child age
group, b = 0.009, R2 = .02, F(1, 21) = 0.43, p = .52.
Additionally, we tested whether there was a rela-
tion between the trial when participants crossed
over and final maximizing. Such a relation might
suggest that participants who crossover later may
not be able to achieve high levels of maximizing.
No such relation was observed, r(47) = �.24,
p = .10, suggesting that time to crossover is unre-
lated to participants’ tendency to reach high levels
of maximizing.

Summary of Experiment 1

Most participants’ choices were best modeled as
a time-evolving mixture of probability matching
and maximizing—beginning first with primarily
matching and then crossing over to primarily max-
imizing. Only 26% of children and 19% of adults
were best modeled as maintaining pure probability
matching throughout the experiment. Furthermore,
although there was similarity between adults and
children at the gross level of description (i.e., the
percentage best fit by combination model), chil-
dren were slower than adults to change behavior.
A lingering question concerned the possibility that
the normal reward probability distribution used in
Experiment 1 was easy or intuitive for participants
to learn. Therefore, we ran an additional experi-
ment with a non-normal reward distribution.

Experiment 2

To test the use of incoming information to direct
behavior change over time using a non-normal
probability distribution, we altered the reward val-
ues in two ways. First, we reduced the probability
of the peak location and increased the probability
of an adjacent location. Second, we moved the loca-
tion of the peak option. We predicted that these
changes would increase the probability that partici-
pants would maintain matching instead of crossing
over to maximizing because individuals tend to
show more probability matching behavior when the
reward probabilities of the various alternatives are
more similar to one another (Little, Brackbill, Isaacs,
& Smelkinson, 1963; Moran & McCullers, 1979; Vul-
kan, 2000).

In Experiment 2, we also introduced an addi-
tional measure of whether participants were sensi-
tive to the underlying reward distribution. Our goal
was to obtain an explicit measure of what partici-
pants “know” about the underlying probabilistic
structure by the end of the experiment.

Method

Participants

The participants in Experiment 2 included 39 chil-
dren and 33 adults. None of these individuals partici-
pated in Experiment 1. Thirty-two children
completed 200 trials of this task, whereas 7 children
terminated the study after 100 trials and were

Figure 6. Trial number when participants’ data were first
described as maximizing. Mean trial number and raw data pre-
sented as a function of age group (includes only participants
who crossed over to maximizing; children n = 23, adults n = 26).
Error bars represent standard error of the mean.
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excluded from the subsequent analyses. The final
sample included 32 children (15 males; Mage = 7.87,
SDage = 1.90; 97% White) and 33 adults (13 males;
Mage = 20.61, SDage = 1.92; 48% White).

Procedure

Experiment 2 used the same procedure as Experi-
ment 1, except that the probabilities assigned for each
rock location were (from left to right): 20%–60%–10%–
5%–5%–0%–0%–0% (Figure 7; calculation of reward
receipt for matching and maximizing provided in the
Supporting Information). Upon completion of the
experiment, adults provided estimates of the percent-
age of time the reward appeared at each location. Pilot
testing suggested that the majority of children were
unable to provide specific information related to prob-
abilities, so we instead asked children to identify the
rock behind which the most coins appeared.

Scoring and Analyses

We fit the same four models described in Experi-
ment 1. Data from all participants were either best
fit by the combination model or the probability
matching only model and thus the results will be
presented in the same format as in Experiment 1.

Results

Characterizing Responses

Of the 32 children and 33 adults who completed
Experiment 2, 10 (31%) children and 18 (55%)
adults were best fit by the combination model. All
other participants were best fit by the probability
matching only model. Similar to Experiment 1,
there was no difference between proportion of chil-
dren and adults best fit by the combination model,
31% versus 54%, respectively; v2(1) = 2.71, p = .10.

Because only 10 children crossed over in Experi-
ment 2, there was insufficient power to statistically

compare children to adults or to examine the effect
of age on crossover time within the child sample.
However, collapsing across groups, there was no
correlation between time to crossover and final
maximizing, r(26) = �.25, p = .20, suggesting that
time to crossover to maximizing does not affect the
tendency to reach high levels of maximizing.

Sensitivity to Underlying Reward Distribution

We ran a linear regression, regressing the true
underlying reward distribution on participant
responses and found that adults were able to success-
fully approximate the reward location probabilities,
b = 0.94, F(1, 29.73) = 991.50, p < .001. There was no
significant difference in the accuracy of the estimates
of participants who crossed over to maximizing and
those who did not, b = �0.0000000006, F(1,
29.00) = .00, p = 1.00, again suggesting that differ-
ences in behavior were related to choice strategy,
rather than knowledge of the task statistics. All chil-
dren queried (n = 21; including both those who did
and did not crossover to maximizing) also correctly
identified the most highly rewarded location. These
results suggest that participants had a similar under-
standing of the distribution, regardless of whether
they crossed over to maximizing.

Summary of Experiment 2

When the probabilities were altered, only 31% of
children and 55% of adults crossed over from
matching to maximizing. Children were particularly
impacted by the probabilities, suggesting that the
qualities of the information to be learned affect the
strategies that adults and children are able to use.

Comparing Choice Behavior in Experiments 1 and 2

To better understand differences in behavior
based on underlying probabilities, we compared
participant choice behavior in Experiment 1 to par-
ticipant choice behavior in Experiment 2.

Characterizing Responses

There was a significant decrease in the proportion
of participants who were best fit by the combination
model in Experiment 2 as compared to Experiment
1, 43% versus 78% best fit by combination model,
respectively; v2(1) = 14.65, p < .001. This significant
difference was maintained when data from children
and adults were analyzed separately, children:
Experiment 1 = 74%, Experiment 2 = 31%,

Figure 7. Distribution of rewards by location for Experiment 2.
[Color figure can be viewed at wileyonlinelibrary.com]
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v2(1) = 9.98, p = .002; adults: Experiment 1 = 81%,
Experiment 2 = 55%, v2(1) = 4.15, p = .04.

Time to Crossover From Matching to Maximizing

To assess differences in time to crossover from
matching to maximizing between Experiments 1 and
2, we regressed the trial at which participants
crossed over on experimental condition. Because
more adults than children crossed over to maximiz-
ing in Experiment 2, we conducted this analysis with
adults only. Adults from Experiment 2 crossed over
from matching to maximizing approximately 30 tri-
als later than adults from Experiment 1 (M = 82.67,
SD = 54.70 versus M = 52.85, SD = 38.24); b = 29.82,
R2 = .10, F(1, 42) = 4.54, p = .04.

Maximizing

To test whether the asymptotic level of maximizing
was different in Experiment 1 versus in Experiment 2,
we regressed the final proportion of maximizing on
experimental condition. The linear regression indi-
cated that adults in Experiment 2 maximized to a les-
ser extent than adults in Experiment 1 (M = 0.87,
SD = 0.17 vs. M = 0.95, SD = 0.10, respectively) at
the conclusion of the experiment, b = �0.08, R2 = .09,
F(1, 42) = 4.36, p = .04. However, there was still no
correlation between time to crossover and final maxi-
mizing extent, r(42) = �.17, p = .26.

General Discussion

The aim of the present experiments was to investi-
gate whether experience, both over the course of the
experimental session and across developmental time,
influences real-time behavior on a probability learn-
ing task. In Experiment 1, most participants began
the task exhibiting primarily matching behavior and
crossed over by the conclusion of the experiment to
primarily maximizing. Experiment 2 presented par-
ticipants with a different set of probabilities to learn.
In this case, fewer participants demonstrated a
change in strategy than in Experiment 1. This is
despite the fact that participants exhibited knowl-
edge of the probability of reward at locations in
Experiment 2 after the task. Thus, participants used
the outcomes of their behavior to adjust future strate-
gies and improve their receipt of rewards over time.
However, individuals required some degree of expe-
rience before they attempted this strategy change,
and the amount of experience needed depended on
the difficulty of the probabilistic structure.

While understanding the differences between
children and adults is an area that requires more
attention and will be discussed below, there were
notable similarities between the choice behavior of
children and adults, particularly in Experiment 1.
Although children took longer to crossover, they
reached similar levels of maximizing as adults by
the end of the experiment. These findings suggest
that children react flexibly and change behavior
according to incoming information.

Differences in Behavior Across Development

The present data suggest that a simple binary clas-
sification of “matchers” and “maximizers” may miss
critical information. Specifically, both children and
adults changed their behavior as they gained more
experience with the probability structure. However,
this evolution in strategy change occurred more grad-
ually in children than adults, suggesting that there
are developmental differences in the amount of infor-
mation needed before children, compared to adults,
change their approach from matching to maximizing.

What remains unclear is why children crossover
from probability matching to maximizing later than
adults. Several possibilities might be considered
and addressed in future research. For example, chil-
dren may be less skilled than adults at learning in
environments where top-down thinking (such as
rejecting the hypothesis that probability matching
yields greater rewards than maximizing) is needed
(Lucas, Bridgers, Griffiths, & Gopnik, 2014; New-
port, 1990). Instead, children may persist in match-
ing for longer than adults because it allows them to
continue sampling information about the environ-
ment (Denison et al., 2013). In certain circum-
stances, periods of probability matching may in
actuality be valuable as a means of exploration
(Seth, 2011; Shaw & Shaw, 1977), and a predisposi-
tion to explore may be particularly adaptive for
children (Stephens & Krebs, 1986). Yet, children
may not be as adept as adults at recognizing when
exploration is advantageous or disadvantageous.

Recently, Green et al. (2010) argued that probabil-
ity matching in adults does not reflect a “failure” of
decision making but can in fact be an “optimal” solu-
tion given certain sensible prior beliefs about the
world—prior beliefs that are violated by the proba-
bility learning task. For example, outcomes in the
probability learning task are independent across time
(i.e., if Location #4 was rewarded on Trial #1, it is no
more and no less likely to be rewarded on Trial #2
than its base probability). Conversely, many rewards
in the real world are temporally dependent (e.g., a
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bush that has ripe berries on it on Monday is likely
to have ripe berries again on Tuesday). A belief in
temporal dependence will lead to a prolonged pat-
tern of choices in the probability learning task that
are consistent with probability matching. Under such
a model, a longer period of probability matching—as
is observed in children in the current experiment—
would be consistent with an even stronger prior. The
perspective that children may have a stronger prior
than adults stands in contrast to other hypotheses
posed in the literature. For example, there is some
evidence that children are less reliant on their past
experiences and more inclined to base choices on
present evidence (Lucas et al., 2014).

Testing choice behavior under varying conditions
that support the characteristics of model-free learn-
ing, such as those used in Green et al. (2010), may
illuminate the role these assumptions play in choice
behavior of children. Lucas et al. (2014) propose that
children may either have different expectations com-
pared to adults or be less committed to those expec-
tations. These reasons may be relevant in the current
experiments. If children are more fluid and diffuse in
their beliefs than adults, they may attempt to test
more hypotheses as they probability match in the
present experiments, thus taking longer to commit to
maximizing as their primary strategy. Therefore,
while it seems unlikely that children would have a
stronger prior related to temporal dependence than
adults (as children have had less opportunity to
observe outcomes that have temporal dependence),
it could be the case that children update their beliefs
less efficiently (which will also prolong the period of
probability matching). This could be tested experi-
mentally by utilizing probability learning tasks with
various types of temporal dependence.

Studies examining what participants “know”

about the distribution over time will also provide
critical information regarding children’s behavior
change. For example, future studies might ask par-
ticipants during each trial how confident they are
that their choice will be rewarded, or assess
whether participants are able to identify how likely
the reward is to appear in each location. In Experi-
ment 2, we found that all children and adults asked
were able to identify the most frequently rewarded
rock at the conclusion of the experiment. Therefore,
knowing the peak location upon completion of the
experiment does not explain why only some partici-
pants crossed over to maximizing. However,
because we only asked participants at the end of
the experiment, we cannot speak to whether identi-
fying the peak location earlier in the session is
related to behavior change. Further understanding

the participant’s subjective experience may give us
other clues about individual differences in
approach—for example, asking participants which
approach would result in more rewards or whether
they considered each approach as they were com-
pleting the task. Testing such mechanistic models
will be an important next step for the future of this
early research, specifically disentangling what par-
ticipants “know” from what they “do.” Separating
these two processes may offer further insight into
the nature of observed and potential developmental
differences. Furthermore, we may gain insight into
whether different underlying strategies are resulting
in similar behaviors. For example, Bonawitz, Deni-
son, Gopnik, and Griffiths (2014) recently provided
an example of a win-stay, lose-sample shortcut that
children and adults use, which leads to probability
matching. Different underlying strategies may rep-
resent different stages of the learning process and
further our knowledge of how children are using
incoming information to direct behavior over time.

Task Considerations

Experiment 2 was designed to test the use of
incoming information to direct behavior change
over time using a non-normal probability distribu-
tion. Altering the underlying distribution signifi-
cantly impacted performance, both in the ability of
participants to execute multiple strategies as well as
timing to change strategies. Future work may con-
sider including multiple distributions in order to
discern whether particular distributions are more
likely to be associated with certain patterns of
choice behavior. In a pilot study with adults only,
we compared choices in response to the distribution
in Experiment 1 with choices in response to a distri-
bution that contained the same probabilistic values
randomly assigned to each location (distribution:
10–5–5–70–0–0–10–0; n = 31). There were no statisti-
cally significant differences between performance in
Experiment 1 and the pilot condition on the vari-
ables of interest (proportion of participants crossed
over: p = .56, time to crossover: p = .40, extent of
maximizing: p = .65). However, these findings do
not rule out the possibility that children would be
disproportionately adversely affected by randomly
assigning probabilistic values to locations.

Another important future direction is to examine
the relation between the results we have obtained
in our eight alternative sequential choice task and
another commonly employed type of decision-mak-
ing task—the multiarmed bandit class of tasks (Git-
tins, 1989; Weber, 1992). While our task and
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multiarmed bandit tasks have some surface similar-
ity (e.g., multiple options where only one can be
chosen on a given trial, an optimal strategy that
may involve only choosing the single option with
the highest reward value, etc.), there are a few criti-
cal differences that would make a future examina-
tion of a multiarmed bandit task of interest. First,
in our task, the probability of reward in one loca-
tion on a given trial was not independent of the
other locations. Instead, on each trial a single cor-
rect location was chosen and all other locations
would thus necessarily be unrewarded. In a multi-
armed bandit task, whether a given location is or is
not rewarded on a given trial is determined based
on the location’s probability independent of the
other locations’ outcomes (i.e., on a given trial it
could be the case that all of the locations would be
rewarded, none of the locations, or any particular
pattern of locations). Furthermore, in our task the
participant was given full feedback; they always
knew which location was correct on a given trial
(and in turn thus knew that the other locations
were not rewarded). In a multiarmed bandit task,
the participant only observes the outcome of his or
her own choice. This induces what is known as an
“exploration/exploitation” problem (Gittins, 1979;
Gittins & Jones, 1979). In order to estimate the
probability of a reward occurring at each location
in a multiarmed bandit task, it is necessary to
choose each location a sufficient number of times.
This creates a tension between making choices in
such a way as to better learn the probability of
reward at each location, and making choices so as
to maximize expected reward.

Conclusions

Overall, these experiments provide evidence that
individuals change behavior in real time according
to incoming probabilistic information. Furthermore,
experience, both over time and across development,
informs this ability. Individuals often encounter situ-
ations in which there is uncertainty about the rela-
tions between action and outcome. Particularly for
children, who have had less experience in the world
and are faced with having greater amounts of infor-
mation to learn relative to adults, it is necessary to
acquire effective strategies to navigate uncertainty.
This research suggests that using moment-to-moment
information to direct behavior helps children navi-
gate such uncertain situations and make choices that
progressively lead to advantageous outcomes as chil-
dren react flexibly according to probabilities.
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