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Training is typically characterized by a trade-off between

developing efficient performance, or expertise, and maintaining

the ability to generalize one’s knowledge beyond the trained

domain. Here we ask whether it may be possible to train

individuals to enhance their generalization abilities despite this

natural trade-off. We first review the proposal that enhanced

attentional control and cognitive flexibility may be potential

mechanisms that will produce broad generalization. We then

consider the case of action video game play which has been

associated with enhancements in both attentional control and

cognitive flexibility as well as generalization beyond the trained

intervention.
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Expertise: a double-edged sword
Expertise, or reaching an outstanding level of skill in one

domain, is typically the result of thousands of hours of

practice in the given domain. And while the path to

expertise is commonly multi-faceted, it is nearly always

the case that some degree of automatization of function

can be found at the heart of expert level performance. Such

automatization allows what were initially complex and

cognitively demanding sequences of actions or thoughts

to be executed automatically with minimal effort and/or

cognitive load. This not only serves to produce actions or

thoughts that are fast and accurate, but critically, releases

limited cognitive resources for alternative tasks. For exam-

ple, a novice who is first learning to drive a manual

transmission car may need to expend considerable cogni-

tive effort determining what pedal to press, which
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direction to move the shift knob, among others. This in

turn leaves no resources free for conversing with the front

seat passenger or following a map. Conversely, in an expert

driver, basic driving functions have been largely automa-

tized and cognitive resources are thus available to com-

plete these additional tasks.

However, while there is clear value to automatizing

function, it has long been accepted that automatization

also comes at a cost [1,2]. In particular, by repeating the

same task over and over, experts may develop skills that

are so task-specific that they lack the flexibility to adapt to

alterations in the automatized tasks and sub-tasks [3–7].

For example, the performance of skilled typists plum-

mets when certain seemingly minor changes are made in

the keyboard characteristics [8]. Together, the evidence

strongly supports the idea that expertise is often accom-

panied by the development of skills that are incredibly

specific to only those precise actions/thoughts associated

with skilled performance. What is less clear is whether it

is possible to train individuals to become experts, not at a

specific task or domain, but rather at flexibly adapting and

transferring their skills and knowledge as new circum-

stances arise?

Training that fosters generalization — lessons
from action video game play
Over the past 15 years, evidence has accumulated show-

ing that playing one particular form of video game, known

as action video games (primarily what are known as first-

person or third-person shooter video games), leads to

rather broad generalization, with performance enhance-

ments noted in domains as varied as visual perception (e.

g., enhanced contrast sensitivity & better peripheral

detection — [9–11]), top-down attention (e.g., better

change detection, reduction in attentional capture [12–

15]), visuo-spatial cognition (e.g., better mental rotation;

enhanced visual short-term memory [16,17]) and finally

multi-tasking and task switching (e.g., lesser switch cost,

greater ease at multi-tasking [18–20]). In a recent meta-

analysis combining the results of 73 studies and 3773 total

participants, self-declared action video game players were

found to outperform non-gamers by about half a standard

deviation across all aspects of cognition combined. Impor-

tantly, the same trend was seen when considering only

true experiments, wherein non-gamer participants were

specifically trained on an action video game and any

cognitive gains were contrasted against those seen in

an active control group that was trained on a commercial

non-action video game. Indeed, a second meta-analysis
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on 21 intervention studies involving 609 participants

showed that action game training produced a benefit

on cognition of around 1/3 of a standard deviation (as

compared to control-trained individuals) [21��]. Such

results indicate that action video game play is not just

correlated with enhanced cognitive abilities, but does in

fact, cause improvements in these abilities.

The broad generalization seen to result from action video

game training is consistent with the fact that such games

naturally mesh complexity, novelty, and variability, ensur-

ing the game play can never be fully automatized [22�,23].
Action gamers certainly develop some game-specific beha-

viors akin to expertise after hours spent on a particular title,

as when gamers anecdotally report that they cannot play a

game where the y-axis mapping is different from their

practiced routine (i.e., whether pushing the mouse up

makes the player look up or look down). Yet, the incredible

diversity of situations encountered across various action

video game titles ensures constant engagement of two key

cognitive processes: attentional control and cognitive flex-

ibility. For instance, because enemies can appear at virtu-

ally any location, at any time, in any number/combinations,

it is not possible to learn an automatic sequence of actions

that will produce game success. Instead, action video

games continuously challenge attention allocation and

the flexible evaluation of goals and sub-goals [24��,25].
A key prediction of this work is that playing such games

results in enhanced attentional control and cognitive flex-

ibility which in turn fosters generalization.

Attentional control and cognitive flexibility are two cen-

tral and complementary executive functions [26,27],

which, as predicted, are enhanced after action video game

play. Many behavioral studies now document enhance-

ments associated with action video game play on a range

of tasks tapping attentional control — from an enhanced

ability to redirect eye-gaze and attention when initially

wrongly allocated [15,28], to superior visual search per-

formance [14,29], to better distractor suppression [30].

Similarly, although less well established, action video

game play has also been positively associated with tasks

requiring cognitive flexibility such as multi-tasking, task

switching, or forms of working memory [16,20]. An effi-

cient diagnostic task to assess the two key components of

attentional control and cognitive flexibility appears to be

the Multiple Object Tracking task, wherein individuals

must track moving objects from amongst a display con-

taining many visually identical distractor objects. This

task requires both attentional tracking over time and

flexible working memory indexing and updating. Accord-

ingly, this task has recently been shown to load on two

orthogonal factors: one related to a generalized capacity

for efficient perception and awareness — a key function

of attentional control — the other related to cognitive

flexibility — or the capacity to hold and flexibly manipu-

late information in working memory [31].
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A prediction: an inverted U-shape curve for
generalization as training proceeds
Enhanced attentional control and cognitive flexibility

have been proposed to provide a mechanism for generali-

zation, while expertise is achieved at least partially via

automatization, a process that inherently entails releasing

demands on attentional control and cognitive flexibility.

As expertise sets in, these two functions become less

challenged and their enhancement is expected to fade

away. Indeed, much as physical fitness decays in the

absence of continued physical demand, so do enhance-

ments in cognitive abilities in the absence of continued

cognitive demand [32,33]. Generalization is therefore

expected to decrease as learning progresses toward exper-

tise, a prediction in line with the highly specific skilled

performance noted in experts.

Generalization is also expected to be rather limited

during the earliest stages of training. This early period

is characterized by a quickly saturating learning phase

that mostly corresponds to the learners’ mastering the

basic rules or strategies required by the new task. Learn-

ing these basic rules is certainly demanding, tapping long-

term memory systems in particular. Yet, until these rules

are somewhat consolidated, it will be unclear to the

learner to what, or how to direct their processing

resources, thus minimizing the overall load on both

attentional control and cognitive flexibility. To clarify

this point, consider an athlete playing a new sport. Until

the fundamental rules, goals, and strategies of the sport

are understood, the physical challenge will not be maxi-

mal. The same idea applies here with respect to cognitive

challenges.

The phase of learning predicted to induce the greatest

generalization is therefore after this earliest phase, but

before expertise sets in. It corresponds to a phase of

learning which is rather slow and often associated with

the view that ‘practice makes perfect.’ Early in the slow

learning phase, the task is sufficiently well understood to

result in load being placed on attentional control and

cognitive flexibility — load which will, of course, be

slowly released as the learning moves toward expertise.

Thus, generalization as a function of training time is

expected to be an asymmetric U-shaped curve (Figure 1).

Although this remains a prediction, it is instructive to

consider such a view in the context of the impact of

playing the video game Tetris on mental rotation. Given

the above framework, we would expect naı̈ve participants

who are asked to play an intermediate amount of Tetris

(e.g., 10–30 hours), to show some degree of transfer from

their Tetris training to new mental rotation tasks. Such a

finding has indeed been documented in the existing

literature [34,35]. At the same time, we would also expect

that expert Tetris players — i.e., individuals who play

competitively and who have hundreds, if not thousands,
www.sciencedirect.com
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Figure 1
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Proposed conceptualization of the relationship between learning

phases and amount of generalization. In the very earliest phase of

training, the expected amount of generalization is low for the simple

reason that not much has yet been learned that could generalize. As

participants move through the early-to-intermediate phase of training,

the task is expected to be demanding in terms of processing

resources resulting in enhancements in attentional control and

cognitive flexibility, and as a result, greater generalization is expected.

Finally, at some point, task functions begin to be automatized.

Although the task itself is performed with increasing efficiency, the

learning that subserves such changes in performance is tightly tied to

the specific of the task releasing the pressure on attentional control

and cognitive flexibility and thus lesser degrees of generalization are

expected.
of hours of Tetris experience — should not show stun-

ning enhancements in mental rotation ability. Instead,

they would be expected to mainly excel only at the

rotation of Tetris-like shapes, as would be facilitated

by automatizing the action sequences that link each of

the various board configurations to the 7 possible Tetris

shapes. Although such automatization would release cog-

nitive load and greatly facilitate performance, it would

obviously be of little value for any mental rotation task

that does not employ Tetris shapes as documented by

previous work [36,37]. Although there has not yet been a

systematic investigation of mental rotation generalization

as a function of the number of hours of Tetris play, the

available data is in line with this view of the time course of

generalization. More titrated studies though would pro-

vide a valuable test of the trade-off between generaliza-

tion and automatization as training proceeds.

We note that a major challenge in understanding the

trade-off between generalization and expertise is that the

time course of learning, and thus the time needed to reach

expertise, varies widely across domains. Expertise in

playing simple brain games develops quite fast; accord-

ingly learning to play simple brain games has been

associated with limited generalization [38]. By contrast,

expertise when learning to play musical instruments or

other long-term activities such as chess develops slowly
www.sciencedirect.com 
and accordingly the learning of these complex activities

has been associated with greater generalization [39,40��].
In line with the key prediction from the proposed view

training paradigms that are likely to produce the most

generalization are the ones that keep a high load on

attentional control and cognitive flexibility.

The mechanisms by which attentional control
and cognitive flexibility may favor
generalization
To understand how attentional control and cognitive

flexibility may foster generalization, it helps to differen-

tiate between two different ways that generalization can

be assessed. The first, and most common, approach to

assessing generalization involves training an individual on

a given task, and then examining the extent to which the

training produces immediate benefits on new, untrained

tasks. This approach goes back to Thorndike’s ‘common
elements’ hypothesis, where the prediction is that imme-

diately better performance on the generalization task will

only be observed to the extent that the training and

generalization tasks share key processing components

[41–43]. A less commonly employed approach to exam-

ining generalization involves examining the extent to

which training facilitates the learning of new tasks (i.e.,

by contrast to only examining initial performance on the

new tasks — [24��]). This approach recognizes that it is

possible for previous training to facilitate the acquisition

of the new task (whether or not immediate benefits are

also observed on the new task). This latter form of

generalization has been referred to as ‘learning to learn’.

Of course, these two forms of generalization are not

mutually exclusive and could co-occur.

Critically, enhanced attentional control/cognitive flexibil-

ity offers a natural mechanism for the learning to learn

form of generalization. Enhanced attentional control

allows for better extraction of task-relevant information

once the individual understands the basic rules/goals of

the task. This in turn not only allows for more informed

decisions to be made on each trial of the task, it will also

facilitate learning as more information about the task is

extracted on each trial [44,45]. And because the ratio of

signal-to-noise affects performance in many distinct tasks,

this would serve to account for the rather broad generali-

zation produced by training known to enhance attentional

control and cognitive flexibility — such as action video

game play [46]. Greater cognitive flexibility also allows

one to more gracefully adapt to new tasks, to update

memory information and to re-evaluate goals and sub-

goals as they change, all of which are similarly likely to

facilitate learning or asymptotic performance in many

tasks and domains.

Enhanced attentional control and cognitive flexibility

therefore offers a complementary mechanism to the

prevalent view of generalization, which focuses primarily
Current Opinion in Behavioral Sciences 2018, 20:169–173
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on the extent to which the training and generalization

tasks share processing components. Importantly, while

the former mechanism (learning to learn) allows for forms

of relatively ‘far’ generalization, the latter exclusively

predicts ‘near’ generalization (as, by definition, only

‘near’ tasks will share the most processing components).

Note that a fundamental issue remains in characterizing

generalization as far versus near in that we currently lack a

theoretical framework to systematically identify the rele-

vant level of overlap between any two tasks for predicting

generalization [47,48]. Clearly, this is a computational

challenge that awaits to be addressed in future research.

Conclusion
We have considered how the delicate balance between

the demands of learning and the development of autom-

atization as expertise sets in may affect generalization.

We propose that generalization will be broadest during

early-to-intermediate phases of learning, where the basic

task rules and structures are known, but high demands on

attentional control and cognitive flexibility remain. The

case of action video games is interesting because it

represents a case of persistent extreme load on attentional

control and cognitive flexibility, forcing individuals to

make decisions in an ever-changing environment at a

pace that is difficult to match in other activities. We

propose here that the incredible diversity of situations

encountered across various video game titles ensures

constant engagement of attentional control and cognitive

flexibility, fostering in turn greater adaptability and gen-

eralization when facing new tasks or domains.
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