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Abstract The past two decades have seen a tremendous

surge in scientific interest in the extent to which certain

types of training—be it aerobic, athletic, musical, video

game, or brain trainer—can result in general enhancements

in cognitive function. While there are certainly active

debates regarding the results in these domains, what is

perhaps more pressing is the fact that key aspects of

methodology remain unsettled. Here we discuss a few of

these areas including expectation effects, test–retest

effects, the size of the cognitive test battery, the selection

of control groups, group assignment methods, difficulties in

comparing results across studies, and in interpreting null

results. Specifically, our goal is to highlight points of

contention as well as areas where the most commonly

utilized methods could be improved upon. Furthermore,

because each of the sub-areas above (aerobic training

through brain training) share strong similarities in goal,

theoretical framework, and experimental approach, we

seek to discuss these issues from a general perspective that

considers each as members of the same broad ‘‘training’’

domain.

Introduction

For as long as there has been dedicated study of human

perception and cognition there has been interest in whether

these capabilities can be improved via training (James,

1890; Thorndike & Woodworth, 1901). Over the past

decade, this interest has been spurred tremendously by

findings suggesting that many obstacles that were previ-

ously believed to stand directly in the path of such

improvements may in fact be surmountable. For instance,

one dominant framework in the field of neural plasticity

during the mid- to second-half of the 20th century posited

that the brain is capable of large-scale plastic changes only

early in life and afterwards becomes somewhat impervious

to change (e.g., ‘critical’ or ‘sensitive’ periods—Wiesel &

Hubel, 1965). Given such a viewpoint, there would be no

way to improve basic processing capacities in adulthood or

old age through training, as these systems would have

become rigid. However, recent work has established that

plasticity that had appeared ‘‘lost’’ through maturation, can

be at least partially restored via genetic, pharmacological,

or even behavioral means (for a review see Bavelier, Levi,

Li, Dan, & Hensch, 2010)). Thus, while it is still believed

that the brain becomes progressively less malleable over

time, it is now clear that even the elderly brain retains

sufficient capacity for plasticity to support some degree of

improvement.

A second potential roadblock standing in the way of

enhanced cognitive or perceptual abilities is the ‘‘curse of

specificity’’ (Green & Bavelier, 2008). This refers to the

fact that while individuals tend to show improved perfor-

mance on a task given appropriate training, little to no

benefits of this training are seen on new tasks (even if they

are seemingly similar to the trained task). Such task spe-

cific learning has been shown in nearly all fields of psy-

chology from motor control, to problem solving, reasoning,

general cognition, and education (Barnett & Ceci, 2002;

Detterman & Sternberg, 1993; Schmidt & Bjork, 1992;

Tremblay, Houle, & Ostry, 2008). This type of specificity
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has been perhaps most intensively investigated though in

the domain of perceptual learning. Here, specificity has

been observed when learning many low-level features such

as orientation, spatial frequency, motion direction, and

retinal location (Ball & Sekuler, 1982; Fahle, 2004; Fio-

rentini & Berardi, 1980).

Yet, recent research suggests that training can indeed

produce broad, rather than highly specific, learning. In

particular, over the past decade instances of general train-

ing effects (i.e., transfer effects) have become pervasive in

the literature. For example, there is now a substantial body

of evidence demonstrating that aerobic training can

improve performance on a wide variety of tasks tapping

executive control, spatial abilities, and speed of processing

(for a review see Hillman, Erickson, & Kramer, 2008).

Similarly, athletic training has been associated with a

variety of enhancements in perceptuo-motor skills (for a

review see Mann, Williams, Ward, & Janelle, 2007) and

some research indicates that musical training increases

abilities far beyond music—for instance on measures of

fluid intelligence (Schellenberg, 2004). Finally, playing

one sub-genre of video games, ‘‘action video games,’’ has

been shown to lead to improvements in skills ranging from

low-level vision (e.g., contrast sensitivity/acuity—Li,

Polat, Makous, & Bavelier, 2009) to higher-level executive

functions (e.g., task switching/multitasking—Strobach,

Frensch, & Schubert, 2012, for a review see Green &

Bavelier, 2012).

While many studies in these training domains have been

correlational/cross-sectional in nature, critically this liter-

ature also includes a large number of experimental studies

to establish a causal relationship between the given types of

experience and their cognitive outcomes. In fact, the

breadth of the effects observed in many of these domains is

such that they may be sufficient to be of practical, real-

world benefit. Greater aerobic fitness and music education

are associated not only with better performance on lab

tests, but also with better performance in scholastic set-

tings, e.g., mathematics achievement (Davis et al., 2011;

Vaughn, 2000). Finally, action video games have been

shown to improve visual performance in individuals with

amblyopia (Li, Ngo, Nguyen, & Levi, 2011), surgical

ability in endoscopic surgeons (Schlickum, Hedman, En-

ochsson, Kjellin, & Fellander-Tsai, 2009), and reading

performance in children with dyslexia (Franceschini et al.,

2013). While there are occasional studies where transfer

effects have not been observed (for instance see Blumen-

thal et al., 1991; Hill, Storandt, & Malley, 1993 for failures

to observe effects of aerobic training on cognitive function;

Boot, Kramer, Simons, Fabiani, & Gratton, 2008 for a

failure to observe effects of action video game training on

cognitive function; Neufeld, 1986 for a failure to observe a

relationship between music training and mathematics

abilities in a sample of kindergarten children), meta-anal-

yses indicate significant effects in each of these domains

across tasks and labs (Colcombe & Kramer, 2003; Fergu-

son, 2007; Vaughn, 2000). These results, and many others,

thus provide a reason for optimism that training paradigms

can be developed that produce significant enhancements in

cognitive function. This emerging belief has resulted in an

explosion in the creation and assessment of various dedi-

cated cognitive intervention paradigms designed with the

goal of producing more general cognitive enhancements

(Bergman Nutley et al., 2011; Jaeggi, Buschkuehl, Jonides,

& Perrig, 2008; Schmiedek, Lovden, & Lindenberger,

2010; Smith et al. 2009).

Thus, while there is clear potential in training research,

many questions still exist. For instance, do individual

forms of training produce broad rather than specific

behavioral effects (see for instance Klingberg, 2010 and

Shipstead, Redick, & Engle, 2012b for differing views on

working memory training or Nouchi et al., 2013 and Lo-

rant-Royer, Munch, Mescle, & Lieury, 2010 for conflicting

opinions on brain training games such as ‘‘Brain Age’’)?

Perhaps more critically though, there remain crucial

questions about how to design a study to truly demonstrate

that generalization of training effects has or has not been

achieved. While issues related to methodology have always

had a prominent place in experimental psychology

(Campbell & Stanley, 1966; Cook & Campbell, 1979), the

methodology employed in fields examining transfer effects

has recently been the topic of as much debate as the results

of the studies themselves (Boot, Blakely, & Simons, 2011;

Schubert & Strobach, 2012; Shipstead, Hicks, & Engle,

2012a; Shipstead et al., 2012b).

Here, we will discuss several of these issues and crit-

icisms, not necessarily in an attempt to describe our view

of ‘‘proper’’ methodology, but to suggest that it is unli-

kely that there is a ‘‘one-size’’-fits-all methodology that

can be utilized. It is instead the case that the proper

methods will be closely tied to the research questions

being addressed. Furthermore, our explicit goal is to

discuss issues that are important across all research

domains that study training and transfer effects. Although

there exists a number of recent methodological critiques

in individual sub-domains (e.g., Shipstead et al., 2012b—

working memory training, Boot et al., 2011—action video

game training, Rabipour & Raz, 2012—brain training),

we think it is valuable to consider these issues from a

perspective that encompasses all of these fields as the

methodological questions, concerns, and tradeoffs are

shared. These include issues related to expectation effects,

test–retest effects, control group selection, and subject

allocation among others.
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Expectation effects

It is often the case that when discussing cognitive training

methodology, authors attempt to draw links to medical/

pharmacological interventions where the standard method

is the double-blind placebo-controlled randomized control

trial. Unfortunately, the medical trial analogy breaks down

immediately, as one of the primary differences between

standard medical trials and cognitive interventions is that in

a cognitive intervention, there is no way to ‘‘blind’’ sub-

jects to the content of their training. It is essentially a

tautology: subjects that are doing a task know what task

they are doing (though, as we discuss below, they may not

necessarily know why they are doing the task). Resulting

expectation effects (also known as demand characteris-

tics—Orne, 1962)—wherein awareness of a study’s

hypothesis alters subjects’ behavior in the study—create a

potential confound in interpreting the results. Several

critics (Boot et al., 2011; Boot, Simons, Stothart, & Stutts,

2013; Kristjansson, 2013) have thus argued that effects that

have been attributed to differences in experience could in

fact be due to subjects being aware that they were expected

to have better or worse performance. This expectation can

be either a consequence of their previous experience (i.e.,

action gamers versus non-action gamers, musicians versus

non-musicians, athletes versus non-athletes, expert chess

players versus non-experts, aerobically fit individuals ver-

sus aerobically unfit individuals) or a consequence of their

training experience (i.e., in the ‘‘brain training group’’, in

the ‘‘action video game training group’’, in the ‘‘aerobic

activity group’’, etc.). In both cases, the hypothesis is that

subjects alter their behavior to match the expectations

created by their group membership.

However, such an expectation-effect based hypothesis

requires several conditions to be met. First, subjects need to

be aware of the basic hypothesis under consideration.

Because subjects in training and transfer experiments are

usually not made explicitly aware of the hypotheses prior

to or during the experiment, the concern is thus that they

will have deduced the correct hypothesis. Furthermore,

beyond simple awareness of the basic hypothesis, subjects

also need an explicit understanding of how the hypothesis

should be expressed in the data (so as to modify their

behavior accordingly). In a training and transfer experi-

ment, this further requires that the subject know how they

are expected to perform relative to some other group (and

therefore they need to have an estimate of how that group

‘should’ perform as well). For example, action game

playing subjects would need to know not only that they

were expected to ‘‘outperform’’ non-game players, but also

they would need to know that the improvement should

be manifested by having larger compatibility effects in

visual search displays (Green & Bavelier, 2003), better

performance only on dual tasks and not on single tasks

(Strobach et al. 2012) or a non-linear enhancement in

reaction time coupled with no change in accuracy as

compared to non-game playing subjects (Green, Pouget, &

Bavelier, 2010). In the case of aerobic activity, the subjects

would need to know that improvements should be greater

in executive function than in speed of processing (and they

would therefore need to know which interaction terms in

which tasks are indicative of speed of processing versus

executive functioning (Colcombe & Kramer, 2003). It is

thus unclear whether subjects would come to the lab with

beliefs related to the specific hypotheses under consider-

ation (rather than incredibly broad beliefs—e.g., in Boot

et al., 2013a) or know the ways in which these hypotheses

should be born out in data.

In fact, even those experts nominally in the field are not

always good at making correct predictions. For example,

when discussing expectation effects, Boot, Blakely and

Simons (2011) described a hypothetical training experi-

ment involving an action video game trained group and a

Tetris (control) trained group: ‘‘Following training, par-

ticipants view (but do not perform) two transfer tasks: (a) a

fast-paced task in which participants detect targets flashed

in the visual periphery (the useful field of view, or UFOV)

and (b) a task in which participants mentally rotate block-

like shapes. The Tetris training group likely would predict

that their training would improve their mental rotation

performance and the action game training group likely

would predict better UFOV performance…’’ (Boot et al.,

2011). This example is of particular interest because a

study nearly identical to that described above had actually

already been done by Feng Spence and Pratt (2007), with

the hypothesis and the result that action gaming improves

both UFOV performance and mental rotation performance.

Because this finding of an effect on both tasks contradicts

the hypothesis of Boot et al., it clearly shows that even

individuals with interest in the field can make errors

regarding actual experimental hypotheses.

Beyond knowing the experimental hypothesis and the

way hypotheses would be born out in data, it must be

possible for participants to alter their performance so as to

match the subjects’ desires. While the studies in the

expectation effects literature ensure this is the case (e.g., a

study may be one of visual preference where subjects are

free to select an image on the left or the right of the screen

on each trial as in (Nichols & Maner, 2008), it is less clear

that this is possible on the ‘‘performance’’ tasks. If, for

instance, it is possible to improve measured working

memory capacity via desire to do so alone, it suggests

significant issues for the general working memory litera-

ture. Indeed, if one’s working memory capacity could be

substantially altered by one’s beliefs about what one’s

working memory capacity should be, assessments of

758 Psychological Research (2014) 78:756–772

123



working memory capacity would be reasonably meaning-

less as it would be unclear whether these assessments

reflected the capacity of subjects who ‘‘wished’’ to have

high capacities or who did not ‘‘wish’’ to have high

capacities (see also Schubert & Strobach, 2012 for a dis-

cussion of this issue). Similarly, it would be somewhat

problematic if the reason chess experts demonstrate expert

performance in chess is in fact not due to knowledge

structures acquired via deliberate practice (Ericsson,

Krampe, & Tesch-Romer, 1993), but is instead due to their

belief that they should be good at chess.

While the overall issue of expectation effects is abso-

lutely worth considering, the available empirical findings

uniformly point against a major role for expectation

effects. First, if expectancy effects played a significant role

in the generation of transfer effects after action video game

training, one would expect such effects in every study on

this issue. However, the action gaming literature includes

several examples wherein action video game players (who

had been overtly selected) consistently show no benefits—

for instance, on tasks that measure the dynamics of certain

aspects of attention (Castel, Pratt, & Drummond, 2005;

Hubert-Wallander, Green, Sugarman, & Bavelier, 2011).

Furthermore, many different studies on expert versus non-

expert gamers (Clark, Fleck, & Mitroff, 2011; Colzato, van

den Wildenberg, Zmigrod, & Hommel, 2013; Donohue,

Woldorff, & Mitroff, 2010; Dye & Bavelier, 2010; Dye,

Green, & Bavelier, 2009; Trick, Jaspers-Fayer, & Sethi

(2005)) have been performed with completely covert

recruitment (i.e., the subjects’ game playing habits were

assessed unrelated to testing and thus could not have

contaminated their test performance). The results have

been typically consistent with results from studies with

non-covert recruiting methods. In Trick et al. (2005) the

subjects did not fill out gaming questionnaires (this was

done by their parents), and yet the same action video game

advantages on the multiple-object tracking task were

observed that were later found in Green and Bavelier

(2006), a study that used overt recruitment. Similarly, both

Dye and Bavelier (2010) and Dye et al. (2009) utilized

blind recruitment in their child samples and showed the

same effects of action video game experience as in studies

in which either the recruitment was not blind and/or the

questionnaires on game playing habits were finished prior

to testing. In fact, it is notable that in these two latter

studies, the behavioral performance in the 14–17-year-old

age group was nearly identical to the 18–22-year-old age

group, despite the fact that the former was recruited blindly

while the latter was selected for video game playing status.

Such a pattern of results is inconsistent with what would be

anticipated if expectation effects were a serious concern.

Finally, it is also unclear how expectancy could produce

certain neuroplastic changes that have been observed either

in expert gamers or after action video game training. For

instance, Bavelier, Achtman, Mani and Focker (2011)

showed that increasing task difficulty (in a visual search

task) resulted in increasing activity in the fronto-parietal

network of brain areas in non-action game playing indi-

viduals (i.e., greater task difficult = greater engagement of

the attentional system). However, the same increase in task

difficulty led to almost no change in the fronto-parietal

network of expert action video game players. This pattern

of results is consistent with the proposal that expert action

video game players benefit from a more efficient atten-

tional system and is inconsistent with the expectation

hypothesis [simply ‘‘trying harder’’ would almost certainly

lead to substantial activation of the fronto-parietal network;

see also (Krishnan, Kang, Sperling, & Srinivasan, 2013;

Mishra, Zinni, Bavelier, & Hillyard, 2011) for examples of

functional differences associated with action game exper-

tise]. Furthermore, in a video game training study, Wu

et al. (2012) showed that individuals who were trained and

who improved at a first-person shooter video game, dem-

onstrated clear changes in late visual area ERP

components.

Despite the fact though that the available literature

suggests that expectation effects may not be a likely con-

found in interpreting existing results in training studies, it

is nevertheless the case that attempting to measure their

influence would be useful for the field. Unfortunately, how

exactly to measure the effects such knowledge may have

on performance is not currently clear. For example, one

substantial issue complicating the enterprise is that subjects

are not always truthful when they are probed for such

information. For instance, in a study by Nichols and Maner

(2008) each participant in the study (N = 100) was delib-

erately and explicitly made aware of the experimental

hypothesis by a confederate prior to testing. This was

accomplished by having each subject sit in a waiting room

before entering the testing room. While they were waiting,

the ‘‘previous subject’’ (actually a confederate) emerged

and told the waiting subject that the experimental

hypothesis was that people would tend to disproportion-

ately like images that are presented to their left-hand side.

While subjects’ behavior in the test was by and large

consistent with an attempt to confirm the hypothesis sug-

gested by the confederate, zero out of the one hundred

participants admitted to knowing about the hypothesis

when they were probed at the end of the experiment. Thus,

while those in the training and transfer domain can cer-

tainly administer such suspicion probes, it is uncertain

whether they will truly control for the effect in question.

Even if subjects report that they did not infer the hypoth-

esis, a critic could still argue that the suspicion probe

simply did not uncover the true state of affairs. Further-

more, one possibility that is often overlooked is that
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suspicion probes themselves can be subject to expectation

effects and thus the truthfulness of ‘‘yes’’ responses can be

met with similar apprehension as are ‘‘no’’ responses. One

could easily imagine a subject reasoning that: ‘‘If an

experimenter is asking me if I thought I knew the

hypothesis, they are clearly hoping I’ll say something, so

I’ll come up with something on the spot despite the fact

that I had no expectations during the task’’. The same

problematic issue holds for recent attempts of Boot et al.

(2013a, b) who asked subjects for their expectations after

they played different games. There is no way to know

whether these are thoughts the subjects would have had

without being asked.

What then are possible suggestions for modifications to

the methods that have been most commonly employed in

the literature to date? One possibility would be to create a

control group only for expectation effects (i.e., wherein the

experimenter or another confederate deliberately and

explicitly tells subjects in this control group that they are

actually in the ‘‘active’’ condition where benefits are

expected). This still leaves the possibility though that sub-

jects will not believe this information. Another possible

suggestion is to always include tasks wherein performance

is known to be modifiable by changes in expectation, but

that the treatment would not be expected to modify. For

instance, using the example task above (i.e., Nichols &

Maner, 2008), one could imagine having a confederate

inform subjects in an aerobic training study that more aer-

obically fit individuals tend to prefer images presented on

the left side of the screen. If such a pattern of results were

indeed observed (which would not otherwise be an expected

effect of aerobic training), it would suggest that such

expectations could be a contaminant in other results as well.

However, it is essential to note that such a pattern would not

necessarily imply that other results were similarly con-

taminated, nor would the failure to find such a pattern

necessarily imply that other results were not contaminated.

Thus, utilizing a mixture of approaches may be the most

viable course because each method of either controlling for,

or eliciting proof of, expectation effects has serious limita-

tions. However, the potential benefits will need to be

weighed against the costs (as some of these methods could

greatly increase expenditures both in money and in time) and

may only be necessary in more mature fields (i.e., there is

little virtue in controlling for possible confounding causes of

group differences until one knows whether such differences

are observed as a function of a new training paradigm at all).

Test–retest effects

Several authors (Boot et al., 2011; Kristjansson, 2013) have

recently suggested that in order for a study to be valid, both

the treatment and the control group must show significant

test–retest improvements. In this vein, Boot et al. (2011)

remark that according to ‘‘learning theory,’’ ‘‘participants

typically improve when performing a cognitive task for a

second time’’ (pp. 3). Similarly Kristjansson (2013)

remarks that ‘‘Visual and attentional performance usually

improves with practice…’’. For these authors, in cases

where the treatment group shows a significant improve-

ment from pre- to post-test, but the control group does not,

the difference between the groups may not be due to

transfer from some active treatment to the testing, but may

instead be the result of some mechanism wherein the

control training prevents test–retest improvements (i.e., the

active treatment has no effect on improvement, but the

control training instead simply blocks learning). Unfortu-

nately, these statements are simply inconsistent, both with

the available literature on perceptual and cognitive learning

and with the methodology that provides the best opportu-

nity to observe transfer.

To address the question—‘‘are control subjects per-

forming ‘as expected’ when they do not demonstrate sig-

nificant test–retest improvements’’—we must first

understand the exact nature of the criticism. Although this

is not explicitly stated, based upon the totality of the

author’s arguments, it must be the case that they expect

significant test–retest effects in essentially each and every

case (Boot et al., 2011; Kristjansson, 2013). Otherwise

there would be no cause for criticism, as the existing lit-

erature is consistent with the belief that improvement

‘‘often’’ occurs. Examining this stronger hypothesis then,

should we expect significant test–retest effects in every

situation independent of context? No, we should not. And

indeed, many papers in the field of perceptual learning

clearly demonstrate that one single exposure to a task is

often insufficient to drive significant improvements on the

task. For example, in a dot motion direction discrimination

learning study by Ball and Sekuler (1982), subjects were

trained to determine whether two sequentially presented

clips of moving dot stimuli moved in the same or different

directions. Subjects first pre-tested on 8 directions of

motion (spaced evenly across 360�). They were then

trained on just one direction. After three sessions of

training on this one direction, they were once again tested

on all 8 directions. Subjects showed a significant increase

in performance on the trained direction, but no change on

the untrained directions despite the fact that they were

‘‘performing the test for the second time’’ (interestingly the

experiment then continued on through several more cycles

of training on one direction and testing on the others, with

the same lack of retest advantage seen throughout). Simi-

larly, in a recent elegant demonstration of training condi-

tions that produce transferable effects (using a ‘double

training’ paradigm), Xiao et al. (2008) first showed that
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performing a simple contrast discrimination task twice

leads to absolutely no observable benefits in performance.

In fact, one could argue that the entire literature on spec-

ificity of learning (in perceptual learning and beyond) is

built upon the foundation that a single pre-test session is

not typically sufficient to drive significant improvements

on a single post-test session (Redick et al., 2013; Watkins

& Smith, 2013).

Furthermore, beyond the literature on transfer of learn-

ing there is a reasonably extensive literature demonstrating

failures to observe learning even with substantial practice.

For instance, in an influential set of studies by Herzog and

Fahle (1997), not only was one session with feedback

insufficient to observe an increase in vernier acuity per-

formance, no learning was seen after 640 trials without

feedback (see also Seitz, Nanez, Holloway, Tsushima, &

Watanabe, 2006).

Thus, subjects simply are not expected to improve on

every task after a single exposure independent of the spe-

cifics of the task. The failure to observe significant test–

retest effects is often the pattern one would expect from

subjects performing ‘‘as expected’’ and thus critiques

should be wary of simplifying this complex question to an

extent to which it becomes thoroughly inconsistent with

existing knowledge. It is beyond the scope of this review to

list the situations where learning is not expected, but fac-

tors such as the task domain, presence or absence of

feedback, the difficulty of the task, and the time between

the first and second experiences with the task will matter

greatly when predicting whether test–retest effects are

‘‘expected.’’

We now turn to the question of whether test–retest

effects are something to aspire to. While this appears to be

the belief of some authors (Boot et al., 2011; Kristjansson,

2013), we take the opposite view: Test–retest effects are

an explicit enemy of those who seek to observe transfer

effects and, therefore, steps should be taken to minimize

these effects. To clarify this point, consider the following

hypothetical example (see Fig. 1). Subjects are pre-tested

on some Task A, which involves the cognitive process—

a. The treatment group then trains on an experimental task

that involves the cognitive process of interest (a) as well

as a number of unrelated processes (c, d, e, and W). The

other half of the subjects (the control group) train on a

control task that involves only the unrelated processes (c,

d, e, and W). After training, all subjects are post-tested on

Task A. As most views on transfer suggest that the degree

of transfer is a function of the similarity in processing

demands between the training and the transfer test (going

back to Thorndike & Woodworth, 1901 or see Singley &

Anderson, 1989; Taatgen, 2013 for a more modern view),

the obvious hypothesis is that transfer effects should be

observed in the treatment group (which shares process a

with the test), while no transfer effects should be observed

in the control group (which shares no processes in com-

mon with the test). As is clear in Fig. 1 though, the size of

the transfer effect depends strongly on the extent to which

there is learning on the test itself. Large amounts of

learning on the pre-test means that there is little left to

learn through training and consequently there will be

nearly no difference between the treatment and control

groups at post-test (Fig. 1a, b). Conversely, when steps are

taken to reduce learning at pre-test, the learning that

occurs during training can be observed as transfer at post-

test (Fig. 1c, d). Given this conceptualization, larger test–

retest effects will always predict relatively smaller

observed transfer effects. Essentially by demanding sig-

nificant test–retest effects, both Boot et al. (2011) and

Kristjansson (2013) are insisting on reducing the proba-

bility of observing transfer.

So what does the framework above suggest about design

in a training and transfer experiment? The simplest prin-

ciple is that conditions that produce test–retest effects such

as using many trials, providing informative feedback, and

having a short period of time between test and retest,

should be avoided. It is perhaps not surprising that one

failed training experiment in the action video game training

literature (Boot et al., 2008) is one in which there were

significant testing effects (to the extent that both the

treatment and control groups at the final test outperformed

expert action game players). These principles also inexo-

rably argue against attempts to estimate dose–response

curves via repeated testing (i.e., test ? train ? retest ?
train ? retest ? etc.). While one cycle of test–retest may

not always lead to significant learning, more and more

testing increases the probability of learning on the test itself

and, therefore, diminishes the probability of observing

transfer effects (with again, the severity of the concern

depending on the tendency of the particular task to produce

learning). The only way to avoid these issues when

attempting to estimate dose response curves is to perform

studies such as those undertaken by Jaeggi et al. (2008),

wherein different groups of subjects are trained for dif-

ferent lengths of time.

Finally, the framework above also suggests a different

way of analyzing data than what is most commonly

employed in the field. In typical training and transfer

experiments we compare performance averaged across all

pre-test trials with performance averaged across all post-

test trials. By employing such an analysis, we are making

the implicit assumption that performance is stable across

the entire pre-test and the entire post-test. However, it is

quite possible that we are often averaging over a learning

curve. This makes assessing transfer problematic (partic-

ularly because, given the framework above, subjects who

start worse at the post-test should show more improvement,
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as there is more to learn). Instead, a more theoretically

appropriate approach would be to fit learning curves to pre-

and post-test data (preferably at the level of individual

subjects). In this way, it would be possible to ask whether

performance on the first trial of the post-test is consistent

with what would be expected given performance on the last

trial of the pre-test (see for example Jeter, Dosher, Petrov,

& Lu, 2009, where full learning curves are fit both to the

learning and the transfer tests).

Size of the test battery

Another significant point of contention in all training and

transfer fields is the size of the test battery, with several

recent papers (Melby-Lervag & Hulme, 2013; Shipstead

et al., 2012b) criticizing the field for utilizing test batteries

that are too small (often only a single test). While these

papers have very eloquently laid out the case for a larger

test battery, the basic arguments are worth reiterating here.

A

C D

B

Fig. 1 Effect of test–retest improvements on ability to observe

transfer: in this hypothetical example, the question at hand is whether

some form of treatment training will result in significant transfer/

benefits on another test. This hypothetical test involves a single

cognitive process a (solid black line). Transfer is expected from the

treatment training to the test because the experimental treatment also

involves this process (a), while the control does not. a Left panel here

subjects learn a significant amount during the pre-test (i.e., their

reaction times improve significantly). Middle panel during training,

while there is significant learning on the unrelated processes (dashed

lines), there is very little possible improvement left for process a,

even though the training does tax this process. Right panel neither

group has much room left for improvement at post-test. b When

performance is averaged over the pre-test and post-test and the groups

are compared, significant test–retest effects are clear, but there is no

differential effect of training. c Left panel here, testing has been

altered to minimize learning. No feedback is given to reduce the rate

of learning and testing is much shorter (25 trials versus 100 trials).

Middle panel there is thus still a significant amount left to learn about

process a for the treatment group. Right panel following training, the

treatment group has finished learning about process a, while the

control group still has room for improvement. d When performance is

averaged, there is a small, but non-significant improvement in the

control group, while the treatment group shows a significant drop in

RT at post-test. Note: the learning in all cases is exponential as per

(Dosher & Lu, 2007)
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The most critical virtue of a large test battery is that it

allows inferences to be made at the level of processes or

constructs rather than at the level of individual tasks

(Engle, Tuholski, Laughlin, & Conway, 1999; von Bastian

& Oberauer, 2013). For instance, if one wishes to dem-

onstrate an increase in ‘‘working memory capacity,’’ it is

not sufficient to show enhancements on a single task that,

at best, partially loads on working memory; there are

simply too many reasons unrelated to working memory that

might cause an improvement on that one single task.

However, if after training subjects show improvements on

many different working memory tasks (especially if they

do so in proportion to the extent to which the tasks are

known to load on working memory—Colom, Martinez-

Molina, Shih, & Santacreu, 2010), this would constitute

much stronger evidence that the training did in fact

enhance the working memory. Furthermore, a large test

battery also allows the insertion of tests of ‘‘no interest’’

(i.e., tasks that are not expected to be affected by the

training regimen). While researchers typically only include

tests of abilities that they expect to change as a function of

their treatment, tests of no interest have the potential to be

incredibly informative. For instance, consider the assess-

ment of a paradigm designed with the goal of improving

working memory. If subjects are tested on multiple tests of

working memory as well as multiple tests of an ability

unrelated to working memory (e.g., visual search) before

and after training, there are two possible patterns of data

that could emerge at post-testing (assuming the treatment

provides any benefit at all as compared to an active

control).

Pattern 1

The treatment group improved by a greater amount than the

control on the tests of working memory, while no differ-

ences between groups were seen on the tests of visual

search.

Pattern 2

The treatment group improved by a greater amount than the

control on the tests of working memory AND the tests of

visual search.

In both cases, there is a significant effect of the treat-

ment on working memory performance. However, the most

likely mechanism underlying this outcome is clearly quite

different given Pattern 1 versus Pattern 2.

While it is important to highlight the need to utilize an

appropriately large test battery, it is likewise vital to

recognize that there are potential downsides to an ever-

larger test battery (beyond the simple fact that an

increasing number of measures—whether they be related

or not—increases the probability of Type I errors). It is

not necessarily the case that if three working memory

tasks are better than one, that five is better than three, ten

better than five, and so forth. What are the potential

drawbacks? The first possible issue is fundamentally the

same as that discussed in the section above on test–retest

effects: more testing will tend to lead to more learning on

the transfer tests, which will in turn reduce the potential to

observe transfer from the treatment. The only difference

here is that learning in this case would be hierarchical in

nature and occurs at the level of the individual tasks

(Ahissar, Nahum, Nelken, & Hochstein, 2009; Bavelier,

Green, Pouget, & Schrater, 2012). Indeed, it is necessarily

the case that tests that measure similar constructs share

structure at some level of abstraction. Thus, by experi-

encing many of these tests, learning could occur at these

hierarchical levels. For instance, non-verbal intelligence

tests (which are nearly always pattern discovery tests) tend

to have strong similarity in the types of patterns that are

present (e.g., add a component across columns, subtract a

component across rows, reorder a component in a sys-

tematic way across rows, etc.). It is, therefore, possible

that individuals who take many IQ tests will become

highly familiar with the set of patterns that are often

present and they will thus have less opportunity to dem-

onstrate a benefit of training per se.

A second possible issue is related to cognitive depletion

(Baumeister, Bratslavsky, Muraven, & Tice, 1998; Mu-

raven & Baumeister, 2000; Schmeichel, 2007) or cognitive

fatigue type effects (Bryant & Deluca, 2004). Indeed, there

is convincing evidence that performance on tasks, partic-

ularly those that involve control, inhibition, and other

executive type functions (i.e., exactly those functions that

are of most interest to the field), diminishes as a function of

time spent on these tasks (Salminen, Strobach, & Schubert,

2012). For example, Holtzer, Shuman, Mahoney, Lipton

and Verghese (2011) showed that cognitive fatigue was

associated specifically with reduced performance on the

executive control component of the Attentional Network

Test. In large test batteries that take several hours, these

effects can therefore be of substantial concern, particularly

given that cognitive fatigue creates potential confounds in

both directions. If one does observe significant transfer

effects in a treatment group, but not in a control group,

these could be accounted for by training that does not

improve the construct of interest, but instead merely

improves the ability to resist cognitive fatigue. Conversely,

cognitive fatigue could disproportionately affect better

subjects (i.e., those that would otherwise show transfer—as

would be predicted if fatigue leads to a proportional rather

than an additive reduction in performance) and thus elim-

inate the ability to observe transfer that would otherwise be

present.
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A third possible issue is that performance may not be

independent of the order of previous tests (Klauer &

Mierke, 2005). In a large test battery, we are not measuring

performance on Test A, Test B, Test C and so forth.

Instead, we are measuring performance on Test B given

that the subject has already taken Test A, performance on

Test C given that the subject has already undergone Test A

and B, and so forth. This leads us to temporal dependence

effects—sometimes also known as carryover effects or

serial order effects (Brooks, 2012). These effects can take

any number of possible forms—some which will facilitate

performance and some which will inhibit performance. For

example, similarity or differences in response structure or

the relationship between stimuli and responses can lead to

both positive and negative effects on new tasks (Osgood,

1949). Similarly, contrast effects—wherein a task seems

easier or more difficult by comparison with a previous

task—could result in subjects being more or less confident

in their current task performance and thus fundamentally

alter their performance on the new task (Plous, 1993).

All of these dependence effects though, share the gen-

eral property that they create variability in subject perfor-

mance that is unaccounted for and, thus, may reduce the

ability to observe a significant transfer effect. Although

authors will often attempt to counter-balance the presen-

tation order of tasks to reduce biases associated with

temporal dependence effects, two key points are worth

noting. First, while counterbalancing will potentially

reduce the overall influence of bias by allowing one to

average over the various task sequence effects (e.g.,

facilitations and inhibitions), which eventually come to a

null, it does not eliminate the presence of the dependence

effects and thus will continue to represent variability that is

incorrectly attributed to individual differences between

subjects in statistical models (see Fig. 2). Second, count-

erbalancing becomes increasingly impractical as the size of

a battery grows (i.e., with a battery of three tests there are

only six combinations that need to be counterbalanced, but

with a battery of eight tests there are already over 40,000

combinations).

Lastly, as is true of cognitive depletion effects, the

possibility of temporal dependence effects adds another

potential confound in the interpretation of any improve-

ments that are observed. Namely, any improvements in

performance may be a result of an enhancement in the

ability to prevent the detrimental influence of previous

tasks on current task performance rather than enhance-

ments in the base construct of interest. That is the subjects

may not have truly ‘‘improved’’ on any of the cognitive

tasks, but may have instead reduced the extent to which

they allow previous tasks to negatively impact their current

behavior; that the latter is indeed conceivable has been

shown by many studies on task switching, (e.g., Kray &

Lindenberger, 2000).

What do these issues suggest for experimental design?

First, in terms of selecting the size of the test battery the

goal should be to utilize a battery that is ‘‘just the right

size.’’ That size depends critically on the questions at hand,

B

A

Fig. 2 Effect of temporal order effects on estimate of inter-subject

variability: a left panel here there is no effect of order on task

performance. Middle panel subjects are nonetheless run in a

pseudorandom order. Right panel estimates of performance and

inter-subject variability on the three tasks can be acquired (Task A

faster than Task B faster than Task C, with equivalent inter-subject

variability). b Here the tasks interact with one another. For instance,

having just performed Task A leads one to be 50 ms faster on Task B,

while having just performed Task B leads one to be 50 ms slower on

Task A (note: order effects are symmetrical here for convenience,

although they may not be in practice). Middle panel subjects are again

run on one of the six possible orders. Right panel the counterbalanc-

ing has removed the bias (i.e., the estimates of the means are

equivalent to that found in Fig. 3a). However, estimates of inter-

subject variability are much higher (because the statistical model is

not taking into account the order effects and instead attributing these

to intrinsic variability). While the order effects could theoretically be

removed (e.g., modeled as an interaction), the number of subjects

necessary for such an analysis to be feasible is quite large (likely

unfeasible) with only three tasks, let alone with a more extensive

battery
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the extent to which the various tests load on a factor of

interest, etc. If one’s goal is to test possible effects at the

construct level, then there is a minimum number of tasks

that are necessary to allow for such an inference to be

made. Conversely, if one has a tightly defined research

question regarding a single process (e.g., in the case of

dual-task coordination skills, see Liepelt, Strobach, Fren-

sch, & Schubert, 2011; Strobach, Frensch, Soutschek, &

Schubert, 2012), then it will be sufficient to use a smaller

number of tasks, which are most closely related to the

process in question and which are most accepted as para-

digmatic. By and large, under these preconditions, one

should use the smallest (and not largest) possible number

of tests, which is necessary to obtain the current research

goals.

Finally, although some confounds, such as hierarchical

learning, are somewhat unresolvable (though manipula-

tions such as altering the background context can make it

more difficult for subjects to learn that information is

organized hierarchically), confounds such as depletion,

cognitive fatigue, and carry over effects can be minimized

by spreading out testing rather than utilizing single long

testing sessions. Care can also be taken to spread out tests

of similar constructs that might lead to greater fatigue or

carry over effects (as was done in Redick et al., 2013).

Control groups

The selection of the proper control group is one of the most

fundamental issues in training and one of the most con-

tentious. There is general agreement that active control

groups are necessary, as simple test–retest/no contact/pas-

sive control groups fail to rule out too many possible

confounds to allow results to be meaningfully interpreted.

The types of active control groups employed though are

almost always sub-domain or even investigator specific.

For instance, in the sub-domain of music training, the

control is often another activity from the arts, such as

drama training (Schellenberg, 2004). In the sub-domain of

aerobic training, the control is often something else phys-

ical in nature such as toning/stretching (Voss et al., 2010).

In the action video game literature, the control is typically

another video game from a non-action genre (such as

simulation games like The Sims or puzzle games like Te-

tris). For ‘‘brain training,’’ tasks often do double-duty as

treatment and control—where one training task is predicted

to improve one area of processing such as speed while

another is predicted to improve a different area such as

reasoning (Smith et al. 2009).

At the conceptual level, the ‘‘right’’ control is one that

incorporates all of the possible causes of an improvement

that are of ‘‘no interest’’. However, there is not currently

complete agreement as to what mechanisms are of ‘‘no

interest’’ and this is one reason why there is no agreement

as to the ‘‘right’’ control group. For instance, it is clearly

the case that improvements due to test–retest effects are of

no interest, and thus any control group must take the tests

the same number of times and in the same manner as the

treatment group. And, as stated above, most believe that

improvements due to motivation, arousal, etc. are serious

confounds when trying to evaluate the efficiency of an

intervention, and thus any control group should be ‘active’

(as opposed to no contact, for a discussion see Green &

Bavelier, 2012). However, there is debate over what type of

‘‘active’’ control is most appropriate. Some groups strongly

believe that a proper control group must have an adaptive

level of difficulty (i.e., increase in difficulty as the subject

improves at the task). For instance, Redick et al. (2013)

utilized an adaptive visual search task as their control-

training task, Jaeggi, Buschkuehl, Jonides and Shah (2011)

utilized an adaptive knowledge/quiz-type paradigm, and

the control games utilized in the action gaming literature

(e.g., Tetris) naturally become more difficult as the player

performs better (Green & Bavelier, 2003; Strobach et al.

2012). Furthermore, controls in areas like music/aerobic

activity/video games are typically adaptive by nature (i.e.,

drama lessons tend to increase in difficulty according to

good pedagogy, toning exercises increase in demand with

improvements in muscle function). However, other groups

take a different tactic and use a non-adaptive version that is

otherwise identical to the treatment task—for instance, a

treatment group that performs an N-back task where the

level of ‘‘N’’ increases with increasing performance/ability

and a control group that performs the exact same task

except that ‘‘N’’ remains at a low-level throughout training

(Brehmer, Westerberg, & Backman, 2012; Klingberg et al.,

2005). This latter tactic has the advantage of very closely

matching many components of the trained task (stimulus

characteristics/material, motor responses, task instructions,

etc.), but it is unclear whether it can control for other items

of ‘‘no interest’’ such as motivation and/or arousal.

What then are possible guidelines for selecting control

paradigms? First, we would argue that the selection of the

control paradigm/groups should depend on the specific

research aim of the study. Thus, if one is testing a product,

i.e., a ‘‘brain trainer’’ designed to be commercially sold as

something that enhances cognition, then the proper control

is very different than if the goal is to uncover underlying

mechanisms of transfer. For a product, the proper control

should be analogous to the medical field where the standard

is not typically a totally inactive placebo control, but is

instead the best current treatment (i.e., when hospitals are

testing a new cancer drug they do not compare a new drug

to a sugar pill, they compare the new drug to the current

standard of care). So for those who wish to sell a product to
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the public, it is essential to say more than ‘‘our program is

better than something that controls for the bare minimum

of confounds’’ (or worse that ‘‘our program is better than

doing nothing at all’’). Instead, the goal should be to say

that, ‘‘our program is better than what is currently (and in

many cases freely) available’’—be that action video games,

aerobic training, musical training, the programs used in the

ACTIVE/COGITO trials (Schmiedek et al., 2010; Smith

et al. 2009), etc.

For those doing basic research, although it would be

incredibly useful to have a ‘‘standard’’ control that all labs

interested in transfer could utilize, it is unlikely that there

will ever be such a one-size-fits-all approach. If, in our lab,

we are interested in testing the hypothesis that large

amounts of spatial and temporal uncertainty must be

present in video games to observe transfer to new visuo-

spatial tasks, we cannot use the same control as a group of

researchers who are interested in testing the hypothesis that

long-term training on a set of reasoning heuristics will

promote improvements in reasoning on new problem sets.

Similarly, the ideal control in a study utilizing a population

of institutionalized elderly individuals will not be the same

as the ideal control in a study utilizing a population of

college-aged adults.

Finally, it is important when designing a control task to

control for the most likely confounds, but also to create a

control task that is distinct enough from the experimental

task to maximize observable training effects. This follows

the principle of effect maximization in experimental

psychology (Huber, 2009). Thus, our goal should be to

find a balance between manipulating as few processes of

interest as is possible, while still utilizing experimental

conditions that would allow for the detection of a dif-

ference in the parameter of interest. If we created a

treatment and a control condition that, according to a

sophisticated theoretical model, differ only in one fine-

grained cognitive construct (e.g., treatment uses ai, while

the control uses aii), this design would have the potential

to tell us something very meaningful about this particular

cognitive construct. However, our instantiations of these

constructs might not in fact be large enough to create

sufficiently different data sets to actually observe signif-

icant differences (particularly given the relatively small

samples utilized in most long-lasting training research).

Therefore, when creating the control conditions we ought

to maximize the probability of observing an effect by

creating clear differences in the process of interest (i.e.,

not testing ai against aii, but instead comparing ai with

aiiii—or to use a more tangible example, not testing a

treatment with large working memory demands against a

control with moderate working memory demands, but

instead against a control with minimal working memory

demands).

Random or non-random group assignment

One of the first tenets students learn in every introductory

methods class is that random sampling and random group

assignment is the ‘‘gold standard’’ of experimental methods.

However, we would argue that using purely random group

assignment, data in those fields concerned with training and

transfer often becomes impossible to interpret. The most

obvious issue that arises as a result of purely random group

assignment is that random assignment may easily result in

unequal performance at pre-test, as exemplarily illustrated

in Fig. 3. The probability of unequal performance increases

when the sample size is relatively small, as is very often the

case in the domains of training and transfer research

(Campbell & Stanley, 1966). These pre-test differences

(even if they do not rise to the level of significantly dif-

ferent) in turn bring a multitude of possible confounds into

play. For instance, if the treatment group’s performance at

pre-test is better than the control group’s performance

(Fig. 3 right, 1st panel), a ‘successful’ intervention (i.e., the

treatment group improves by more than the control group)

could be attributed to the fact that control subjects often

learn very little from tasks that far exceed their abilities.

Conversely, if the intervention is ‘unsuccessful’ (i.e., the

treatment group does not improve by more than the control

group; not illustrated), this could be attributed to ceiling

effects (or the fact that the treatment started on the shallow

part of an exponential learning curve). Indeed, the treatment

effect may need to be quite large to overwhelm this type of

selection-regression effect (Campbell & Stanley, 1966).

Arguably though, the more troubling case is that in which

the treatment group’s performance is initially worse than

the control group’s performance (Fig. 3 right, 2nd panel).

When this is the case, the predicted effects will result in a

crossover interaction, which makes the inference process

extremely difficult. Can one truly construe this as being

indicative of a ‘‘successful’’ intervention? Is the proper

interpretation instead that the effects represent simple

regression to the mean? With purely post hoc analyses there

is no effective way to perfectly unpack these possibilities.

Fortunately, there are non-random methods of group

assignment specifically designed to reduce imbalance at

pre-test (see Fig. 3 right, 3rd and 4th panel). Probably the

most commonly used methods historically speaking are

‘‘blocking’’ and ‘‘pairing’’ (Addelman, 1969; Feldt, 1958).

In a randomized blocked-design, subjects are first divided

into reasonably homogenous subgroups. These subgroups

are then randomly split and assigned to the different con-

ditions. For instance, if, on the dependent variable of

interest at pre-test, subject scores ranged from 0 to 200,

purely random assignment could create quite unequal

groups (see Fig. 3). In a randomized block design, subjects

would first be stratified based upon their pre-test scores
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(i.e., all those who scored from 0 to 10 are put in one

subgroup, all of those who scored from 11 to 20 are put

into a second subgroup and so on), before being randomly

split and assigned to a condition. A paired design is con-

ceptually the same; the only difference is that rather than

creating subgroups—the experimenter creates matched

pairs. In the training and transfer literature, Spence, Yu,

Feng and Marshman (2009) used this type of design to

examine the effect of action video game training on spatial

cognition in males as compared to females. In their study, a

cohort of males and females were first pre-tested on a

measure of spatial cognition. Male/female pairs with clo-

sely matched pre-test scores were then invited to continue

into the training phase thus ensuring roughly equivalent

pre-test scores across the two sexes (see also Redick et al.,

2013 or Loosli, Buschkuehl, Perrig, & Jaeggi, 2012 for

additional examples).

Beyond these more classic approaches, a method known

as minimization (Pocock & Simon, 1975; Taves, 1974) has

gained some prevalence in clinical trials and could be of

use in the training and transfer domain. The general prin-

ciple underlying minimization is that while the first subject

is assigned to a group at random, subsequent subjects are

assigned so as to reduce imbalance between the groups

(Chen & Lee, 2011; Smith, 1984). Under this general

category label, there are many specific algorithms (Sag-

haei, 2011). There are methods that can be utilized for

cases where all prognostic factors are known for all sub-

jects (i.e., all pre-test scores, etc.) prior to group assign-

ment, or in cases where enrollment is rolling. In the most

straightforward instantiation, subjects are simply added to

the group that minimizes the mean difference between the

groups. From there though, the algorithms can greatly

increase in complexity to, for instance, minimizing dif-

ferences in multiple variables (potentially weighted by

their reliability) or to matching both means and standard

deviations of the groups (as unequal variance between

groups violates the assumptions of most parametric statis-

tical tests). In addition, this minimization method can lead

to different sample sizes.

Fig. 3 Randomization versus minimization in group assignment:

from the left: subject test scores have a mean of 100 and a standard

deviation of 30. Middle top when subjects from this population are

randomly assigned to a control and an active treatment group (groups

of 16 subjects), on average there is no difference between the groups,

however, individual samples may have large differences from zero

(i.e., the treatment group may vastly outperform the control group or

vice versa). Middle bottom—conversely, using a minimization

algorithm reduces the chance of a large difference existing between

the two groups. Top right large differences between groups at pre-test

lead to difficulties in interpreting eventual results. If the treatment

group is worse than the control group at pre-test, then the expected

pattern of results is a ‘‘catching up’’ effect or a ‘‘crossover’’ effect

(leading to concerns about regression to the mean). If the treatment

group is better than the control group at pre-test, then one concern is

that the test is simply too difficult for the control group to show any

improvement. Bottom right minimization avoids these issues (i.e., the

two graphs are nearly identical—in one case the control group is only

slightly better than the treatment at pre-test, while in the other, the

treatment group is only slightly better than the control group)
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It is worth noting though that none of these approaches

are without issue (see also Campbell & Stanley, 1966). For

instance, blocking approaches typically require that all

subjects be pre-tested prior to any subject beginning

training (i.e., the researcher needs to know the pre-test

scores for all subjects before the subgroup divisions can be

formed). This can be difficult for labs that are not equipped

to train the entire experimental cohort simultaneously. It is

also the case that there will be diminishing returns asso-

ciated with adding increasing numbers of blocking vari-

ables as well as the potential for increased cost. For pairing

approaches, a certain number of subjects that are pre-tested

will not be utilized because no matched pair can be formed

(e.g., in Spence et al., 2009, 43 subjects were pre-tested to

find 10 matched pairs). This can represent a significant cost

in time and effort. Finally, all of the approaches come with

associated potential pitfalls in analysis that need to be

carefully considered (Kahan & Morris, 2012a, b; Zhao,

Hill, & Palesch, 2012). One remaining question for the

field going forward is whether it should become standard to

perform additional parallelization between groups on

measures beyond the specific tests of interest. For instance,

one could imagine circumstances where it would be useful

to match groups according to IQ, working memory

capacity, or basic learning ability (e.g., if the goal is to test

the effect of a treatment on problem solving).

Difficulty in making inferences across studies

One of the major issues in the field is that the results of

studies testing the effect of one training regimen do not

allow for inferences to be made regarding training regi-

mens not under consideration. For instance, the success or

failure of a music training paradigm cannot be used to alter

current estimates of the probability that a working memory

training paradigm will be successful. More unfortunately

still, we are not only lacking in the ability to connect across

sub-domains, to some extent we cannot even draw infer-

ences within a sub-domain. For instance, the success or

failure of one ‘‘brain training’’ paradigm cannot speak to

the likelihood of success or failure of any other regimen

that falls under this label. As an example, the results of the

highly cited brain training paper by Owen et al. (2010), led

many to the conclusion that ‘‘brain-training games don’t

work’’ (Rutherford, 2010—although it is important to note

that Owen et al. were much more careful with their

wording). What can actually be concluded from this study

is that the methodology employed by the authors (e.g.,

‘‘brain training games’’ that were ‘gamified’ versions of

standard psychology paradigms and performed training at

home) resulted in no statistically significant improvements

on a small battery of tests of reasoning, short-term

memory, etc. From this data, it is not possible to infer what

would have occurred had a slightly different population

been employed or if more than just a few hours of training

were required, let alone to extrapolate to the entirety of

‘‘computerized brain trainers.’’ A similar argument could

be made for the recent paper by (Redick et al., 2013),

which cannot truly be taken as a failure to replicate the

work by (Jaeggi et al., 2008). Given the number of changes

made to the regimen (e.g., the nature and the extent of the

test battery), this must be considered as a separate result all

together (whether one or the other is more indicative of the

‘ground truth’ will be for future research to determine).

Therefore, although the current push in the field is

overwhelmingly toward translational research (whether to

combat age-related cognitive decline or to reduce symp-

toms associated with attentional disorders), the current

state of affairs calls much more strongly for work at the

theoretical end. We assume that, as a field, we are in a

similar position as was the field of gene therapy in its

earliest stages. By the 1970s techniques existed to insert

segments of foreign DNA into mammalian cells and thus to

permanently alter their function. However, while it was

evident that there was the potential for the development of

an incredibly powerful tool to fight human disease

(Friedmann & Roblin, 1972), it was similarly clear that the

knowledge necessary to fulfill this tool’s vast potential was

lacking (of the genome in general, of the relationship

between genes, the proteins they code for, and the eventual

disease state that they mediate, etc.). And indeed, rather

than haphazardly and indiscriminately entering into trans-

lational gene therapy trials, nearly two decades of foun-

dational knowledge was accrued before the first human

gene marking study was approved (and only in the past

5–10 years has the technique been used to great success

(Sheridan, 2011). In the area of cognitive enhancement, it

is not remotely evident that we understand the mechanisms

well enough to wield tools at our disposal in practical

settings although we have a significant number of them.

What then are some options going forward? The most

obvious answer is that a significantly greater amount of

data needs to be collected. Only with a large amount of

data on a wide variety of different paradigms (treating the

issues associated with non-significant results appropri-

ately—see the next section) can we begin to understand the

space of factors inherent in cognitive training paradigms

and then in turn to discover the parts of the space that

produce the most effective training regimens.

Acceptance of the null hypothesis

A final issue concerns the observation of null results and

how they should be interpreted. One might have imagined
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that when a null result is found in a field still in its infancy

(as is true of the cognitive enhancement field) the standard

approach would be to look for factors that may have

obscured the finding of a possible training effect (i.e., to

ensure that the null result was not due to an idiosyncrasy of

a particular design choice). Yet, in current discussions we

often find the opposite approach—a push toward con-

straining designs so as to minimize the probability of

finding an effect (many of which are discussed earlier in

the paper). Part of this trend has undoubtedly arisen in

response to the proliferation of ‘‘brain training’’ products

now being sold and advertised with only the flimsiest (if

any) evidence backing their claims. However, it is unclear

whether this trend is truly in the best interests of the

overarching field, particularly given the fact that most

studies are designed in such a way that only a positive

outcome will actually be informative. That is, studies are

often significantly underpowered and thus null results

provide essentially no useful information—this should not

be taken to suggest that null results should not be pub-

lished, only that studies should be designed so that null

results are worth publishing.

Take for instance the case of training time. If, in a

hypothetical study, 5 h of aerobic training results in greater

changes in executive function than 5 h of stretching, this is

informative. However, if, given the same methodology, no

significant differences were found between the groups, this

is far less revealing. This latter pattern of results certainly

cannot be used to infer that ‘‘aerobic training’’ has no effect

on executive function. It would thus be useful if studies

were designed to ensure that ‘insufficient length of train-

ing’ could not be the cause of a null result (perhaps by

calculating when a plateau has been reached in learning on

the training task—although even then further learning

improvements may occur after a plateau has been reached).

The same logic can be applied to factors discussed

earlier in the manuscript. While there is a certain virtue in

designing paradigms to ensure that confounding factors are

not the root cause of a positive training effect, it is equally

critical to ensure that confounding factors are not the root

cause of null training effects.

Conclusions

The past two decades have witnessed a significant increase

in the study of training regimens—from aerobic exercise,

to musical training, to athletics, to video games, to working

memory training, to dedicated ‘brain trainers’—that may

produce general enhancements in cognitive functioning.

Although these regimes are often treated as very separate

domains, the questions that have arisen related to meth-

odology (‘‘How can we most convincingly demonstrate

that a given regimen has a given effect?’’) are strongly

shared across all of these sub-fields. Some issues that have

been raised, such as expectation effects, do not appear to be

a significant concern based upon the currently available

data, though attempts can nonetheless be made to more

fully control for such possibilities. What forms those con-

trols should take however, remains an open question (e.g.,

it is unclear that simple suspicion probes truly represent

value added). Other issues, such as the proper size of the

test battery, while quite legitimate, are unlikely to have a

one-size-fits-all solution. Large test batteries have both

clear virtues (e.g., the ability to make inferences at the level

of cognitive constructs rather than at the level of individual

tests) as well as potentially large drawbacks (e.g., reduc-

tions in power due to order effects or cognitive fatigue) and

thus the proper test battery size clearly depends on the

goals of the experiment. Similarly, the selection of a con-

trol task also depends deeply on the hypotheses under

consideration. Finally, there are some areas, such as group

assignment, in which the field will continue to improve.
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