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The majority of theoretical models of learning consider
learning to be a continuous function of experience.
However, most perceptual learning studies use
thresholds estimated by fitting psychometric functions to
independent blocks, sometimes then fitting a parametric
function to these block-wise estimated thresholds.
Critically, such approaches tend to violate the basic
principle that learning is continuous through time (e.g.,
by aggregating trials into large ‘‘blocks’’ for analysis that
each assume stationarity, then fitting learning functions
to these aggregated blocks). To address this discrepancy
between base theory and analysis practice, here we
instead propose fitting a parametric function to
thresholds from each individual trial. In particular, we
implemented a dynamic psychometric function whose
parameters were allowed to change continuously with
each trial, thus parameterizing nonstationarity. We fit
the resulting continuous time parametric model to data
from two different perceptual learning tasks. In nearly
every case, the quality of the fits derived from the
continuous time parametric model outperformed the fits
derived from a nonparametric approach wherein
separate psychometric functions were fit to blocks of
trials. Because such a continuous trial-dependent model
of perceptual learning also offers a number of additional
advantages (e.g., the ability to extrapolate beyond the
observed data; the ability to estimate performance on
individual critical trials), we suggest that this technique
would be a useful addition to each psychophysicist’s
analysis toolkit.

Introduction

One common assumption, instantiated in numerous
theoretical models in the domains of psychology,
neuroscience, and computer science, is that learning is a
continuous function of experience. For example, this
assumption underlies all models that use some form of
a delta rule procedure (Casey & Sowden, 2012;
Rumelhart, Hinton, & Williams, 1986; Spratling &
Johnson, 2006). Here, in each learning epoch, the
learner makes a prediction regarding the correct
output, and then receives feedback as to the true
correct output. The learner then computes the differ-
ence between their prediction and the true correct
output and uses this to update the next prediction.
When done repeatedly over time, this process will tend
to gradually move the learner’s predictions into
alignment with the true correct outputs. Learning is
also modeled as a continuous process in many purely
associative learning models (Bejjanki, Beck, Lu, &
Pouget, 2011; Guenther, Ghosh, & Tourville, 2006;
Rosenblatt, 1958; Spratling & Johnson, 2001). These
models regularly use some form of Hebbian learning
principle, wherein the strength of the connection
between two nodes is updated after each learning epoch
by an amount proportional to the extent to which the
two nodes were simultaneously active during the
learning epoch. Finally, Bayesian learning models are
inherently continuous in nature, as each observed
training example increases or decreases the probability
that a particular estimate/hypothesis is correct (by an
amount that depends on the strength of the evidence
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provided in the training example and the prior
probability that the particular estimate/hypothesis was
correct; (Jacobs & Kruschke, 2011; Michel & Jacobs,
2007). Thus, although the general spirit as well as the
detail-level implementation of these models may vary
substantially, all instantiate this same basic principle
that learning is a continuous process wherein small
changes in ability accumulate via experience (Lu, Hua,
Huang, Zhou, & Dosher, 2011; Mazur & Hastie, 1978;
Petrov, Dosher, & Lu, 2005).

Not surprisingly, models in the field of perceptual
learning share this same fundamental assumption that
learning mechanisms are inherently incremental (Her-
zog & Fahle, 1998; Law & Gold, 2009; Lu et al., 2011;
Petrov et al., 2005; Poggio, Fahle, & Edelman, 1992;
Sotiropoulos, Seitz, & Seris, 2011; Vaina, Sundares-
waran, & Harris, 1995; Zhaoping, Herzog, & Dayan,
2003). Indeed, theoretical models in this domain
frequently have at their core one of the three broad
types of learning rules/processes above (i.e., delta rule,
associative/Hebbian, Bayesian). Interestingly, percep-
tual learning is even posited to be continuous in
conditions that may not initially seem to easily support
such learning. Take, for instance, the case of block
feedback (Herzog & Fahle, 1997). In training tasks that
employ block feedback, participants do not receive
feedback regarding their accuracy after each trial.
Instead, they are given their average accuracy across
the entire previous block of trials after the block is
finished. This poses a challenge for many of the models
aforementioned, which require an explicit error signal
to update behavior (i.e., the type of signal that would
typically come from trial-by-trial feedback). However,
one influential theoretical model in the field of
perceptual learning produces continuous changes in
performance even in this block feedback case. In this
model, participants can use external and internal
signals to update behavior. If, as is true in block
feedback designs, there is not an external learning
signal available to drive learning on each trial, the
model will instead use internal estimates to alter
performance continuously (with the internal signals
being updated whenever external feedback is provided;
Liu, Dosher, & Lu, 2014).

Thus, given the fact that essentially all theoretical
models in the domain of perceptual learning suggest
that learning should be continuous with experience, it is
interesting to note that, in most behavioral experiments
in this domain, learning is accounted for in a
discontinuous manner. Rather than modeling changes
in behavior as a continuous process using completely
trial-dependent parameters, learning is often accounted
for by first computing performance in discrete ‘‘blocks’’
of trials and then using the differences across those
blocks (or fitting a parametric function to block
performance as the measure of learning; Ball & Sekuler,

1987; Beard, Levi, & Reich, 1995; Dosher & Lu, 1998;
Fahle & Edelman, 1993; Fahle & Morgan, 1996;
Fendick & Westheimer, 1983; Gantz, Patel, Chung, &
Harwerth, 2007; Seitz, Nanez, Holloway, Tsushima, &
Watanabe, 2006; Yu, Klein, & Levi, 2004). For
example, in one common method, the learning data is
first subdivided into discrete blocks of trials, with the
block size typically being based upon the experimental
methods that were employed and ranging anywhere
from 50–700 trials; (Ball & Sekuler, 1987; Fahle &
Morgan, 1996). Then, a psychometric function is fit to
the data within each block (e.g., logistic, Weibull, or
cumulative Gaussian; Coates & Chung, 2014; Crist,
Kapadia, Westheimer, & Gilbert, 1997; Fahle &
Edelman, 1993) and a threshold value is calculated
(e.g., 79% threshold). The difference in this threshold
value from early blocks in training to late blocks in
training is then used as the quantification of learning.
In another common method, the threshold values for
blocks are parametrically fit with a monotonically
decreasing function (e.g., power, exponential; Astle,
Blighe, Webb, & McGraw, 2015; Chung, 2011; Coates
& Chung, 2014; Herzog & Fahle, 1997, 1999; Levi,
Polat, & Hu, 1997; Matthews, Liu, Geesaman, & Qian,
1999; for a review, see Dosher & Lu, 2007).

Critically though, one important implicit assumption
of such fitting procedures is that the parameters of the
function are not changing over the block of trials being
considered (e.g., the fitting in these cases necessarily
assume that the data is generated by a constant level of
performance). Thus, even when using parametric fits to
block thresholds, performance is assumed to be
stationary within each block and the most precise
estimate of performance and learning is at the
aggregated block level (alternatively, each block
threshold must be taken to represent a particular trial
in the block, e.g., the middle trial or the first trial). The
process of fitting a learning function to block thresh-
olds is problematic itself due to the errors inherent in
sequentially modeling hierarchical data; see, e.g.,
Moscatelli, Mezzetti, & Lacquaniti, 2012.

This same implicit assumption regarding within-
block stationarity of performance also underlies
essentially all adaptive techniques for quickly estimat-
ing thresholds (e.g., staircases, PEST, QUEST, etc.; see
Treutwein, 1995). Indeed, using an adaptive technique
to estimate a threshold makes little sense if the
threshold is actively changing during the estimation.
Finally, this assumption of stationarity is present in any
statistics that simply aggregate performance over an
entire block without fitting. This includes analyses built
upon signal detection theory (e.g., d’ analysis assumes
that the particular pattern of hits and false alarms
across a block of trials is driven by a constant
sensitivity) as well as any technique wherein perfor-
mance is quantified as a simple average over blocks of
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trials (e.g., percent correct). In essence, by using the
aforementioned approaches, participants are being
modeled as not changing at all within blocks of trials
and instead are only free to improve in between blocks
of trials (i.e., learning in a stepwise fashion). Because
such a stepwise function is in direct contrast to our
theoretical understanding of learning as a continuous
function characterizing the relation between improve-
ment and experience, in the present paper we present a
new method of analyzing perceptual learning data to
account for continuous changes in performance as a
function of experience. Specifically, we employ a
standard psychometric function whose parameters are
allowed to change continuously through time. This is
conceptually identical to fitting a psychometric func-
tion to all data points as a single block, but
parameterizing nonstationarity rather than assuming
within-block stationarity (Fründ, Haenel, & Wich-
mann, 2011). By fitting the psychometric function to
the largest possible ‘‘block’’ (i.e., all trials) we reduce
noise introduced by factors other than perceptual
ability, and by estimating learning as a function of the
smallest possible ‘‘block’’ (i.e., each individual trial) our
estimates better reflect the continuous nature of
learning. In addition, we improve upon parametric fits
to block estimates by requiring fewer free parameters,
while also providing simultaneous fits to stimulus
(threshold) and time (learning) dimensions.

Here, we show that our continuous time-parametric
model provides a better fit, without overfitting, to
perceptual learning data than the more traditional trial-
independent, nonparametric approach of fitting psy-
chometric functions to data in consecutive blocks of
trials. This is perhaps not surprising given that block
models necessarily take a functional form that is
inconsistent with our beliefs about actual human
learning. Furthermore, in addition to simply providing
a better fit to perceptual learning data, the continuous
time-parametric model also offers a number of other
empirical (e.g., more accurate extrapolation of perfor-
mance) and theoretical advantages (e.g., ability to use
all data in assessing the functional form of learning;
provides a natural method for estimating certain
important trials, such as the first and last trial of
training) over standard nonparametric block fitting or
parametric fits to blocks. We therefore suggest it will be
a valuable addition to every psychophysicist’s toolkit.

Method

Perceptual learning data/tasks

Data from two different standard perceptual learn-
ing tasks was used in the current analysis. Both data

sets, including one examining orientation discrimina-
tion training (N ¼ 7) and one examining stereoacuity
training (N¼7), overlap with previously published data
sets (Green, Kattner, Siegel, Kersten, & Schrater, 2015;
Snell, Kattner, Rokers, & Green, 2015). In the
following material, we briefly describe the basic
training methods for the data that is considered (Note:
For each of the following tasks, participants underwent
brief pretests without feedback prior to training on
both the to-be-trained task as well as various transfer
measures; however, because the focus of the current
manuscript is on fitting learning curves this data is not
considered).

Orientation discrimination training methods

For full task methods, see Green et al. (2015).
Briefly, in the orientation discrimination training task,
on each trial, participants were presented with a central
‘‘T’’ (either upright or upside down) as well as a full-
contrast Gabor patch at an eccentricity of 108 below the
‘‘T.’’ The orientation of the Gabor was drawn from a
uniform random distribution between 308 and 608.
After the stimuli were presented, the participants were
required to first respond to the orientation of the ‘‘T’’
(by pressing the ‘‘w’’ or ‘‘s’’ key for upright or upside
down, respectively), and then to the orientation offset
of the Gabor relative to 458 (by pressing the right or left
arrow key for clockwise or counterclockwise, respec-
tively). Participants completed 3,800 such trials, dis-
tributed over four different days.

Stereoacuity training methods

For full task methods, see Snell et al. (2015). In the
stereoacuity training task, on each trial, two white
three-dimensional rectangles, offset relative to one
another in depth, were presented. The size of the offset
was drawn from a uniform distribution between 0 and
60 arcsec. The participants’ task was to indicate which
square appeared closer in depth. Participants complet-
ed 7,500 of such trials, distributed across five different
days.

Parametric model of continuous perceptual
learning

Because both tasks involved participants making
two-alternative forced choice (2-AFC) decisions on
stimuli that varied in signal intensity, the continuous
model was built upon a generalized psychometric
function (Equation 1), relating an observer’s responses
to stimulus intensity x (e.g., orientation or stereo
offsets; see Supplemental Materials for additional
fitting details related to software, etc.):
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fðx; b; hÞ ¼ kþ 1� 2k

1þ k
b�x
h

ð1Þ

Equation 1 contains two constants: The parameter k
was defined as 3.76 (¼ 0.79/0.21) in order to estimate
79% thresholds. k refers to a lapse parameter. In
essence, this can be considered the probability that a
participant will show a total ‘‘lapse’’ of attention in
which case his/her performance will be unrelated to the
stimulus that was presented; in practice, this is used to
account for trials at very high levels of stimulus
strength that the participant nonetheless answers
incorrectly (see Klein, 2001). This lapse value was held
constant at 0.02. (Note that values for the lapse
parameters between 0 and 0.1 were assessed—for the
most part, the particular value did not affect the quality
of fits, although there was a tendency for the largest
values to somewhat degrade the fits.) The two
remaining parameters b and h refer to the bias and
threshold of the psychometric function, respectively.
To account for continuous perceptual learning, these
two parameters (b and h) were themselves fit as
functions of time (t; see Equations 2 and 3 as follows).
Because the focus of this article is not on the exact
functional form of those parameters in relation to time

(we note that identifying the exact functional form of
the change function is beyond the scope of this paper;
see Discussion and Supplemental Materials, and
Kattner, Cochrane, Cox, Gorman, & Green, 2017 for
an alternative parameterization), we chose to model
bias as a two-parameter exponential function of time
(Equation 2) and threshold as a three-parameter
exponential function of time (Equation 3).

bðtÞ ¼ b0 � e�
t
b1 ð2Þ

hðtÞ ¼ pre� ðpre� postÞe�t
s ð3Þ

Continuous perceptual learning in the two sets of data
can thus be accounted for by a psychometric function
with two constants (k and k) and five independent
parameters, with b0 referring to initial bias, pre to the
initial threshold, post to the final asymptote of the
threshold, and two slope parameters for bias and
threshold (b1 and s, respectively).

The relationship between trial-dependent parameter
estimates (bias and threshold) and the time-evolving
psychometric function is illustrated in Figure 1 (panels
A, B, C) for an exemplar participant trained on the
orientation discrimination task.

Figure 1. Illustration of the parameters b and h as fit using the block and continuous models of psychophysical data with an exemplar

orientation discrimination subject. (A) Change of the bias value b fit within 38 independent successive blocks (black squares) or as a

continuous function of trial number (solid line). (B) Change of the threshold value h fit as 38 independent successive blocks (black

squares) and as a continuous function of trial number (solid line). (C) The resulting trial-dependent psychometric function as

estimated with the continuous model (0¼ counterclockwise, 1¼ clockwise). As is clear, the continuous approach models performance

as changing smoothly through time. (D) The resulting psychometric functions in 38 independent 100-trial blocks of training (0 ¼
counterclockwise, 1 ¼ clockwise). This approach is, in essence, only allowing for changes in performance across blocks of trials.
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Nonparametric (block) model of perceptual
learning

As a standard against which the continuous time
parametric model could be compared, we also fit the
data via a block-based method commonly used (Dosher
& Lu, 2000) in the perceptual learning field (see Figure
1, panel D). For each participant and task, the data was
first divided into blocks of 100 trials each. A single
logistic function (Equation 1; two free parameters) was
then fit to each block. The relationship between block-
by-block parameter estimates (bias and threshold) and
the resulting discrete psychometric functions in each
block are illustrated in Figure 1 (panels A, B, and D)
for an exemplar orientation discrimination participant.

Hybrid model (see Supplemental Materials)

Our main interest in this paper is in comparing the
two analysis approaches described already (approach
#1: the nonparametric block model where thresholds
are fit to blocks of aggregated data thus not assuming a
trial-dependent change in parameters, e.g., Crist et al.,
1997; Fahle & Edelman, 1993; approach #2: the
continuous time parametric model where thresholds are
fit by considering trial-by-trial changes in the param-
eters of the psychometric function). However, it is
worth noting that there is a third approach that is, to
some extent, an intermediate between a fully time-
continuous model and a fully block model. Namely, it
is possible to account for perceptual learning by first
aggregating data within discrete blocks of trials and
then fitting a continuous model to these ‘‘block-
averaged’’ response probabilities. Because parametric
fitting to block thresholds is a common approach to
analyzing data in the literature (e.g., Chung, 2011;
Coates & Chung, 2014; Fründ et al., 2011; see Dosher
& Lu, 2007 for a review of earlier studies) we present
the results of this type of ‘‘hybrid’’ model in the
Supplemental Materials along with several other
alternative models , all of which use the same learning
functions (Equations 2 and 3; see Discussion).

Comparing continuous parametric and block
nonparametric analyses

In comparing the continuous parametric and block-
based nonparametric analysis approaches, we exam-
ined several basic aspects of model quality. The first
was simply to examine how well the model captures the
full pattern of data. To this end, after fitting both the
continuous time and the block model to the full
training data for each participant, several measures
were assessed, including Akaike and Bayesian infor-

mation criteria (AIC and BIC, respectively). Both
metrics provide estimates of the quality of a model
relative to other models. More specifically, both involve
a calculation of the likelihood function (i.e., probability
of the data given the model; see Equation 4, with r
being the observed binary responses) that is then
penalized based upon the number of parameters in the
model (penalty term¼ [�2logLþ kp], with L being the
likelihood function, p being the number of parameters
in the model, and k being an additional penalty that
differs for AIC and BIC). In particular, with large
numbers of parameters, this penalty is greater in the
case of BIC than AIC (the term k is set to 2 for AIC
and log(p) for BIC). In addition to AIC and BIC, we
also calculated v2 measures (accounting for the
discrepancy between theoretical/fitted and observed
data, see Supplementary Materials for equation; cf.
Klein, 2001).

logL ¼ R log f x; b; hð Þð Þrð
þ 1� log f x; b; hð Þð Þð Þ 1� rð ÞÞ ð4Þ

Second, one major concern in essentially all data
modeling is related to overfitting—when the model
captures random fluctuations/noise in the data rather
than only capturing true signal (i.e., in the case of
perceptual learning, the true signal would be actual
changes in performance). Overfitting becomes a
greater and greater concern as models increase in
complexity (e.g., increases in the number of free
parameters; see Figure 2). To account for overfitting,
the quality of each model fit was assessed in a standard
train/test procedure. Specifically, the models were first
fit to data on the odd trials only (i.e., 1,900 and 3,750
orientation and stereo discrimination trials, respec-
tively). The quality of the resulting model fit was then
assessed with respect to data on the even trials by
calculating AIC, BIC, and v2. The rationale here is
that the training set (i.e., the odd trials) should be
generated from the same basic perceptual sensitivity as
the test set (i.e., the even trials). Thus, by examining
how well the fits derived from the training set (odd
trials) match the data in the test set (even trials), we
can assess the extent to which the two competing
models properly fit the data, without overfitting the
data.

Third, 95% confidence intervals around the fits were
computed via bootstrapping (i.e., drawing random
samples with replacement from the individual trial
sequences, fitting psychometric functions and calculat-
ing threshold of each sample, and determining the
confidence intervals from the 97.5% and 2.5% percen-
tiles; see Supplemental Materials for additional detail
on the bootstrapping procedure). The width of the
confidence intervals was then contrasted between the
models. Like already mentioned, this provides an
estimate of model quality, again, in particular the
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extent to which the model is susceptible to overfitting.
A model that is more prone to overfitting might
produce markedly different estimates depending on the
particular (perhaps idiosyncratic) set of trials that is
considered. A model that is less prone to overfitting
should produce essentially the same estimates regard-
less of the exact set of trials that is considered.

Fourth, both the models were fit only to an initial
portion of the data and then used to predict fits of the
remaining trials. This tests a final critical aspect of
perceptual learning data analyses – the ability to make
a forward prediction. Specifically, thresholds were fit to
the responses on the initial 1,500 orientation and 3,000
stereo discrimination trials, respectively, and the fitted

thresholds were then extrapolated over the remaining
trials of the respective task. The extrapolated estimates
were then contrasted against the true data by calcu-
lating the AIC, BIC, and v2 measures. Note that the
nonparametric block approach provides no natural
method of extrapolation (as it does not implement any
particular functional form). Thus, for the block model,
the extrapolation was obtained by fitting continuous
functions (Equations 2 and 3) to the threshold and bias
parameter estimates obtained for each block (i.e., with
constant biases and thresholds for all trials within a
block) of the initial subset of the data. These parameter
functions can then be used to predict threshold for the
remaining blocks.

Figure 2. Illustration of how overfitting can be detected. (A) Fit to an arbitrary time series data using a less complex model

(exponential). (B) Fit to the same arbitrary time series data as in A, but using a more complex model (high-order polynomial). In

examining how well the two models fit the data in A and B, it is clear that both do a reasonable job of predicting the position of the

data points with the more complex model, if anything, doing a better job. (C) Fit to just the even trials of the time series data using

the less complex model. (D) Fit to just the even trials of the time series data using the more complex model. Again, both models do a

reasonable of predicting the position of the data points. (E) The fit on the even trials from the less complex model continues to do a

good job of predicting the position of the untrained (odd) trials. (F) The fit on the even trials from the more complex model does a

quite poor job of predicting the position of the untrained (odd) trials. This is the hallmark of an overfitting model. It does a good job

of making predictions about the trained data set, but performance is markedly poorer for the untrained data.
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Results

Overall fit

The models were first fit to responses in all 3,800 and
7,500 trials of orientation and stereo discrimination
training, respectively. The resulting goodness of fit
metrics are summarized in Table 1 (see the Supple-
mental Materials for information on the hybrid
models). Both models clearly fit the data well overall.
Of interest is that the block model tends to show better
performance as determined by AIC values (better for
11 out of 14 participants), whereas the continuous
model shows better performance as determined by BIC
values (better for 14 out of 14 participants). Less
consistent support for either model has been obtained
with the v2 metric (i.e., the discrepancy between
observed and predicted data was smaller for the
continuous model in five out of 14 participants). Given
that the major difference between AIC and BIC is the
extent to which greater model complexity is penalized,
it was next of interest to examine whether the better
performance seen in AIC values in the block model is
due to overfitting.

Test for overfitting: Train/test analysis

For both tasks, the goodness of fit of the models was
evaluated by fitting the models to the responses on odd
trials and testing with regard to the responses on even
trials. Table 2 shows the resulting AIC, BIC, and v2

metrics for the block and continuous models fit to the
data of each participant (see Supplemental Materials
for the hybrid models). As can be seen in Table 2, the
test data was consistently fit better by the continuous
model (providing a markedly better fit for all 14
participants regardless of the measure of model fit
employed). It is remarkable, given that the continuous
model only has a fraction of the number of free
parameters that the block model has, that this more-
parsimonious fitting method is clearly a better fit to the
test data. This pattern of results suggests very strongly
that while the nonparametric block approach appeared
to do a reasonable job when examining the fit to the full
data set, it was very likely in fact dramatically
overfitting the data (i.e., block threshold estimates are
likely fitting some noise). Meanwhile, the continuous
model, which is (a) far less complex in terms of number
of parameters than the block model and (b) instantiates
a strong belief about the manner in which the data
should be generated, appears to be considerably less
susceptible to overfitting. Just as larger blocks will
reflect perceptual ability more accurately by averaging
over more noise in the data, fitting all of the data as one
nonstationary block (i.e., the continuous parametric fit)
minimizes the influences of noisy data on threshold
estimates.

Learning gains and confidence intervals

The amount of perceptual learning in both dis-
crimination tasks can be quantified (with both models)
by subtracting the final threshold estimates from the
initial threshold estimate (e.g., first 100 trials minus

Subject

Continuous model Block model

logL AIC BIC v2 logL AIC BIC v2

O1 �1477 2964 2995* 3998* �1403* 2957* 3155 4094

O2 �1643 3296 3327* 3723 �1508* 3169* 3367 3388*

O3 �1626 3263 3294* 3829 �1540* 3232* 3430 3652*

O4 �1086 2182* 2213* 3415 �1029* 2210 2408 3147*

O5 �2380 4770 4801* 3810* �2268* 4687* 4885 3898

O6 �1281 2571 2603* 4335* �1198* 2549* 2747 4413

O7 �1671 3351 3383* 3747* �1532* 3215* 3413 4102

S1 �3019 6049 6083* 7929 �2838* 5975* 6366 7430*

S2 �3972 7955 7989* 7638 �3825* 7949* 8340 7534*

S3 �2357 4724 4758* 9201 �2157* 4613* 5004 7881*

S4 �4271 8551* 8586* 7713* �4141* 8582 8973 7766

S5 �2808 5626 5661* 7815 �2650* 5600* 5991 7780*

S6 �4369 8748* 8783* 7564 �4231* 8762 9153 7562*

S7 �3590 7191 7225* 7732 �3423* 7146* 7537 7499*

Table 1. Overall analysis of model fits: Goodness of fit metrics (log likelihoods, AIC, BIC, and v2) for the continuous model (np¼5) and
block model (np¼ 76 and np¼ 150, respectively) fit to nd¼ 3,800 orientation discrimination trials (subjects O1–O7) and nd¼ 7,500
stereo discrimination trials (subjects S1–S7). Asterisks indicate the model with the best relative fit to the data (note that this does not
indicate ‘‘statistical significance’’ in the traditional null-hypothesis sense).
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last 100 trials; note that the initial orientation and
stereo discrimination threshold estimates were con-
strained to a maximum of 908 and 1.5 arcmin,
respectively). The overall amount of learning esti-
mated with the two models was almost identical: For
the orientation discrimination task, the block model
found threshold improvements of M ¼ 19.348 (SD ¼
23.67), whereas the continuous model estimates an
average reduction in threshold of M ¼ 19.288 (SD ¼
20.94). For the stereo discrimination task, improve-
ments of 25.07 arcsec (SD ¼ 29.49) were found with
the block model, whereas the continuous model
suggests a threshold decrease of 25.88 arcsec (SD ¼
22.16). The estimated improvements did not differ
significantly between models for either task, p ¼ 0.71
and p ¼ 0.90, respectively (using nonparametric
Wilcoxon rank tests; similar nonsignificant results are
found using t tests).

However, differences were found with regard to the
confidence of the fitted thresholds that were reached as
a result of perceptual learning. The individual 79%
thresholds and 95% confidence intervals, as obtained
with the continuous and with the block model, are
illustrated in Figures 3 and 4 for the orientation and
stereo discrimination task, respectively. For the orien-
tation discrimination data, a one-sample Wilcoxon
signed-rank test revealed that the confidence intervals
orientation discrimination thresholds estimated for the
final 100-trial block were significantly smaller with the
continuous model (M¼1.498; SD¼1.278) than with the
block model (M ¼ 4.598; SD ¼ 3.278), p ¼ 0.03 (see
Figure 3). Likewise, the confidence intervals of the
estimated stereo discrimination thresholds in the last

block were significantly lower with the continuous
model (M¼7.51 arcsec; SD¼7.96 arcsec) than with the
block model (M¼ 25.93 arcsec; SD¼ 20.09 arcsec), p¼
0.02 (see Figure 4).

For both the continuous and the block model, the
average CI in the last block was subtracted from the
average CI in the first block for each data set in order
to quantify how well both models capture learning-
related decreases in uncertainty of the two models.
With the continuous model, the median CI decrement
was 71.808 for the orientation discrimination task, and
17.11 arcsec for the stereo discrimination data. In
contrast, with the block model, the CI decrements were
15.568 and 11.67 arcsec for the orientation and stereo
discrimination tasks, respectively.

Extrapolation analysis

The qualities of the continuous and the block models
were further evaluated by fitting both models only to an
initial portion of the training data (i.e., 1,500 and 3,000
trials for the orientation and stereo discrimination
tasks, respectively), and then extrapolating the thresh-
olds for the remaining trials of each training task, based
on the fitted models. For the majority of data from
both psychophysical tasks, the thresholds extrapolated
based on the continuous model fit the actual data better
than did the thresholds extrapolated based on the block
model. The exact goodness-of-fit measures for the
block and continuous models extrapolated to data
from the two tasks are summarized in Table 3 (see the
Supplemental Materials for the hybrid model). As

Subject

Continuous model Block model

logL AIC BIC v2 logL AIC BIC v2

O1 �792* 1594* 1621* 2201* �882 1916 2061 4459

O2 �820 1651* 1678* 1852* �814* 1780 1926 2481

O3 �785* 1580* 1607* 1802* �807 1766 1911 2313

O4 �520* 1050* 1078* 1555* �564 1279 1425 2405

O5 �1189 2387* 2415* 1900* �1181* 2514 2660 2345

O6 �628* 1267* 1294* 2175* �672 1496 1642 3341

O7 �841* 1692* 1720* 1892* �866 1885 2030 3328

S1 �1496* 3002* 3033* 3858* �1578 3455 3742 5923

S2 �2008* 4026* 4057* 3855* �2084 4468 4754 5105

S3 �1205* 2419* 2450* 4819* �1243 2786 3073 5995

S4 �2157* 4324* 4355* 3869* �2226 4752 5039 4939

S5 �1365* 2739* 2770* 3753* �1413 3127 3413 4669

S6 �2184* 4379* 4410* 3797* �2264 4827 5114 4738

S7 �1788* 3586* 3617* 3788* �1836 3972 4259 5042

Table 2. Overfitting analysis for the orientation (subjects O1–O7) and stereo (subjects S1–S7) discrimination data. The continuous (np
¼ 5) and the block model (np¼ 76 and np¼ 150) were fit to nd¼ 1,900 and nd¼ 3,750 even orientation and stereo discrimination
trials, respectively. Models were then tested with regard to the same number of odd trials. Asterisks indicate the model with the best
relative fit to the data.
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expected, for six out of seven orientation discrimination
participants and for all stereo discrimination partici-
pants, the BIC metrics of extrapolated psychometric
functions reached a better fit with the continuous
model than with the block model. Only for one
participant (O6), responses on the first 1,500 trials
could be extrapolated better with the block model
(based on BIC), probably due to a slower rate of
learning (i.e., the continuous model may not have
identified a consistent decrease in threshold during this
period; see Figure 3).

Discussion

The majority of theoretical models across many
domains of psychology, including the domain of
perceptual learning, consider learning to be a process
that occurs continuously with experience. However,
despite this, most empirical studies in this domain have
modeled learning as arising via a discontinuous
process. Indeed, participant data in this field is nearly
always first separated into distinct blocks of trials for
analysis, with block sizes typically being guided by
experimental decisions (e.g., how many trials are

feasible per day). From there, whether the analyses
involve data fitting (e.g., fitting performance across
each block with a psychometric function) or simple
aggregation/computation (e.g., percent correct across
the block; d’ across the block), all share the implicit
assumption that there is no significant change in
performance within blocks and instead only allow for
learning to occur in-between blocks.

Given the clear mismatch between the theoretical
and analytical approaches in this domain, here we
sought to develop a method to bring these approaches
into better alignment. Specifically, using data collected
from two perceptual learning experiments, we com-
pared two main analytical data fitting methods—the
standard nonparametric approach (fitting psychometric
functions to blocks of trials) and a new continuous time
parametric approach that allows for a trial-dependent
continuous change in the parameters of the psycho-
metric function. Consistent with existing theory in the
field, the continuous time parametric model of per-
ceptual learning provided a more parsimonious ac-
count for the data than the standard nonparametric
trial-independent approach. Importantly, our new
continuous time parametric model did not do so by
producing totally different estimates than the block-
based approach. Rather, the fact that the core estimates

Figure 3. Individual orientation discrimination thresholds based on the 38 separate logistic fits (Equation 1) to 100-trial blocks (block

model; blue lines), and the five-parameter continuous model (orange lines). The shaded areas represent the respective bootstrapped

95% confidence intervals for the block and continuous fits, respectively. The dashed green line refers to the hybrid model thresholds

(see Supplemental Materials).
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of thresholds/learning produced by the standard

methods were quite similar to those produced by our

new approach speaks to the validity of the new

approach.

Overfitting

Perhaps the largest difference between the contin-
uous approach and the nonparametric block approach

Figure 4. Individual stereo discrimination thresholds based on the 75 separate logistic fits (Equation 1) to 100-trial blocks (block

model; blue lines), and the five-parameter continuous model (orange lines). The shaded areas (blue and orange for the respective

models) represent bootstrapped 95% confidence intervals for the respective fits. The dashed green line refers to the hybrid model

thresholds (see Supplemental Materials).

Subject

Continuous model Block model

logL AIC BIC v2 logL AIC BIC v2

O1 �788* 1587* 1616* 2015* �871 1802 1974 5350

O2 �991* 1993* 2021* 1866* �1104 2267 2439 2570

O3 �918* 1847* 1875* 2127* �1055 2170 2342 5876

O4 �599* 1207* 1236* 1511* �2286 4632 4804 25296

O5 �1417* 2845* 2874* 2149* �1467 2994 3167 2371

O6 �874 1759 1788 6618 �770* 1601* 1773* 4142*

O7 �970* 1950* 1979* 2113* �1017 2094 2266 2668

S1 �1871* 3752* 3784* 2902* �3118 6357 6741 4556

S2 �2477* 4965* 4997* 6152* �2506 5132 5516 6745

S3 �1389* 2788* 2820* 8401* �1430 2981 3365 9941

S4 �2542 5094 5126* 3713* �2474* 5068* 5452 3771

S5 �1566* 3142* 3174* 5112* �1656 3431 3816 8440

S6 �2683 5377 5409* 4020* �2573* 5265* 5650 4176

S7 �2081* 4172* 4204* 3258* �3111 6342 6727 4542

Table 3. Extrapolation analysis: The continuous (np¼ 5) and the block model (np¼ 20 and np¼ 50) were fit to early training trials (nd
¼ 1,500 and nd¼ 3,000 of orientation and stereo tasks, respectively), and thresholds were extrapolated by fitting the models to the
remaining nd¼ 2,300 and nd¼ 4,500 orientation and stereo discrimination trials, respectively. Asterisks indicate the model with the
better relative fit to the data (based on AIC, BIC, and v2).
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was in the ability to fit the data without overfitting the
data. Indeed, the large number of free parameters
resulting from fitting multiple psychometric functions
to a large number of blocks makes the nonparametric
approach extremely flexible. This flexibility in turn
means that the approach will tend to capture any and
all fluctuations in the data (we note that this remains
true of approaches that fit parametric functions to
block threshold estimates; each threshold estimate
being fit by the parametric function itself comes from
a model fit—it is not in fact ‘‘raw data’’—and thus
such a model still has an extremely large number of
free parameters and is exceptionally flexible, though
less so than the nonparametric version; see Supple-
mental Materials for Hybrid model results). This
includes fluctuations that arise due to noise alone,
which can be substantial in 2-AFC experiments given
the standard deviation associated with the binomial
distribution. It also includes any number of non-
monotonic fluctuations in performance that are
unrelated to actual changes in perceptual ability (e.g.,
mind-wandering/failures of sustained attention, etc.).
Data points consistent with these issues can be clearly
seen just by simple examination of the block-by-block
fits of both experiments, where threshold estimates in
contiguous blocks commonly differed by substantial
margins (i.e., in a manner that could not possibly be
due to a true change in perceptual ability). The
parametric continuous model, meanwhile, treats these
occasional deviations as noise, and thus their presence
did not substantially affect the estimate of partici-
pants’ true behavioral abilities at the given time
points. Although overfitting is a concern any time data
is modeled, it is of particular relevance to the domain
of perceptual learning. Consider, for example, the
simple question of ‘‘How much did participants
improve?’’ at a given task. Because the nonparametric
block approach tends to overfit noise, this will reduce
confidence in early and final performance estimates
and thus will reduce confidence in the estimated
change between early and final performance (i.e., a
few idiosyncratic points in either the first or last block
may produce extremely different estimates of total
learning).

Trial-specific estimation

In addition to the fact that the continuous time
model simply provides a more trustworthy estimate of
participant performance and learning, there are a
number of other aspects of this method of fitting that
may be useful to the field going forward. For instance,
one benefit of the continuous parametric model is that
it is capable of providing estimates of performance on
particular trials of interest. Specifically, in learning

experiments, the most critical trials very commonly
correspond with the first and last trials of training.
Assuming that learning has roughly reached an
asymptote by the end of training, the ‘‘last trial’’
estimates given by the continuous parametric ap-
proach and nonparametric block approach will tend
to be quite similar (excluding issues related to over-
fitting noise in the block approach). This is because,
once participants have hit a rough asymptote, their
behavior closely approximates the key block-based
assumption that performance is not changing sub-
stantially within a block. In contrast though, sub-
stantial differences between the nonparametric and
parametric approaches are possible in their estimates
of early performance. Indeed, given an exponential or
power functional form, the early portion of training is
when performance changes most rapidly from trial to
trial (Badiru, 1992; Dosher & Lu, 2007; Heathcote,
Brown, & Mewhort, 2000). Because the nonparamet-
ric model aggregates across the first 100 or more trials
(Crist et al., 1997; Fahle & Morgan, 1996; Gantz et al.,
2007; Z. Liu & Weinshall, 2000; Seitz et al., 2006);
with 150, 80, 200, 2,000, and 640 trials, respectively), it
is necessarily the case that this approach will collapse
over a substantial amount of learning (i.e., the average
performance across the block will be substantially
better than the performance on the first few trials).
Therefore, without using trial-dependent changes in
the parameters of the psychometric function, the true
‘‘total’’ amount of learning that has occurred from the
first trial of training to the last trial of training will
necessarily be underestimated.

Testing functional form of learning

This issue also speaks to another benefit of the
continuous parametric model— the ability to more
fully examine the functional form of learning.
Although our approach here was purely descriptive
(i.e., the eventual functional form we chose was simply
the one that provided the best overall fits to the data—
see Supplemental Materials for other parameteriza-
tions; also see Kattner et al., 2017; Snell et al., 2015),
the general framework can be easily used to test
explicit predictions about the best fitting functional
form. This is critical as the observed functional form
of learning in a task limits the possible mechanistic
models that need to be considered. As such, the
question of functional form has thus been investigated
in many different fields (Badiru, 1992; Heathcote et
al., 2000; Newell & Rosenbloom, 1981) including the
field of perceptual learning. For instance, it was
reported that the improvements of Vernier acuity
thresholds found in adults with amblyopia (not
considering slope) across successive blocks (which
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were distributed across several days) can be fit by an
exponential function (Levi et al., 1997). Similarly,
negative exponential functions were used to fit
improvements in reading speed in visually impaired
patients (Chung, 2011). Other researchers have
meanwhile separately modeled improvements in
thresholds and slopes (or the width of the psycho-
metric function; Coates & Chung, 2014; Fründ et al.,
2011). In seminal work by Dosher and Lu (2007),
several different functional learning forms were
contrasted, in particular, power versus exponential.
The authors found that an exponential functional
learning form provided the best fit to individual data
(with power only fitting better for the aggregate across
participants). Critically though, the authors in this
case employed a staircase technique to train partici-
pants (140 trials per block). As noted already, because
participants are likely to be learning rapidly during
this first block, their performance at the end of the
block (i.e., which is disproportionately what a
staircase analysis focuses on) is almost certainly better
than their performance at the beginning of the block.
Thus, one likely outcome of this type of trial
aggregation approach is to flatten the shape of the
learning curve (i.e., by overestimating initial perfor-
mance), which could in turn potentially affect the best
fitting function. Although our experiments were not
designed to speak to the exact issue of functional form
(e.g., because the participants in our experiments
underwent pretesting prior to training, which could
also alter estimates of the functional form of learning),
the overarching approach could easily be used to
examine this question more closely.

The approach can also be extended to address
related questions, such as whether the first 100 or 200
trials should be included in the full learning curve
analysis or whether these trials should be thrown out/
treated as practice trials as is common in the literature
(i.e., whether there is an early stage of learning that is
qualitatively and quantitatively different from the
remainder of the learning process). Similarly, the
parameterization can be extended or altered to
determine whether there are changes in other aspects of
the underlying performance functions such as the
temporal characteristics of the response biases [e.g., (a)
whether it necessary to allow the response bias to
change over time or can it be set as a constant—see
Supplemental Materials; (b) whether a separate func-
tion for the response bias be set for each ‘‘day’’ of the
experiment] or the lapse/guess rate (e.g., in our case we
assumed a constant lapse rate, but this could also
change with training; for examples, see Fründ et al.,
2011; Jones, Moore, & Amitay, 2015; Petrov, Dosher,
& Lu, 2006) or in the best form of the probability
distribution.

Estimating learning and transfer

Further, because the continuous time parametric-
model fit has the potential to provide estimates of first
trial and last trial performance, it could be additionally
useful in designs seeking to address questions regarding
total learning (i.e., by comparing first trial and last trial
estimates rather than first block and last block), rate of
learning, as well as questions related to transfer of
learning (Kattner et al., 2017). In the latter cases,
‘‘transfer’’ could be calculated as the difference in
performance on the final trial of the training task and
the first trial of the transfer task, or the increase in
learning rate in the transfer task when compared with
the training task. It may also be possible in this
endeavor to take advantage of the fact that the
parametric model provides for a natural method to
extrapolate beyond the data set (i.e., to estimate how
performance would have continued to evolve if the
participant had carried on with the training task, as
compared to how they did perform when asked to
perform a new transfer task). Such an extrapolation has
no analogue in a nonparametric model that relies on
aggregating across trials into blocks, in which perfor-
mance on the last training block is frequently
contrasted with performance on transfer block perfor-
mance (Liu & Weinshall, 2000).

Finally, we note that the data of primary interest in
many perceptual learning papers is not actually the
training data, but is instead performance on pre- and
post-tests (e.g., to determine whether there are im-
provements on some untrained task from pretest to
posttest). The approach we have outlined here plays an
important role in this type of design as well. Learning
generalization (i.e., an improvement on an untrained
task after training), can take multiple functional forms.
There can be an immediate enhancement on the
untrained task at posttest (i.e., performance on the first
trial of the posttest exceeds performance on the last
trial of the pretest). There can also be a change in the
rate at which performance improves on the posttest
(i.e., performance on the first trial of the posttest
matches performance on the last trial of the pretest, but
then performance on the post-test rapidly improves).
We have referred to these different functional forms of
generalization as ‘‘transfer’’ and ‘‘learning to learn’’
respectively (Kattner et al., 2017). Critically, it is easy
to misidentify the functional form if a block approach
is used to analyze pretest and posttest data (since such
an approach does not given an estimate of immediate
performance on the posttest nor an estimate of how
performance changes throughout the posttest, but
instead considers performance during the posttest to be
stationary).
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Limitations

Although, as we have shown here, modeling learning
as a continuous function of experience on a task
provides definite benefits in comparison to standard
block-by-block analysis of perceptual learning, there
are clear limitations to the approach as well. Many of
these limitations are related to the strict functional
form imposed by the continuous learning function,
which would be an issue in circumstances where the
data genuinely took a functional form that could not be
captured by the model. One circumstance where this
would be the case is if there are true discontinuities in
learning (Petrov et al., 2005). For instance, in learning
experiments that take place over many days, partici-
pants may not actually begin each day with the exact
same level of performance that they finished with on
the previous day (i.e., they may need to readjust to
performing the task on each day). This would result in
a learning function that is effectively ‘‘scalloped,’’
which is a functional form that the current model
cannot capture (it would instead tend to smooth over
these discontinuities—although the model could cer-
tainly be extended in many different ways to account
for such data; see, for example, Levi et al., 1997; Yu et
al., 2004). Another circumstance that would violate the
assumptions of the current approach is if performance
improves for a period of time and then proceeds to
become worse. This could be the case, for instance, in a
long, single-day training experiment where thresholds
increase toward the end of training due to fatigue or if
participants experience periods of ‘‘mind wandering’’
(McVay & Kane, 2009, 2012); note though that
although the nonparametric approach could capture
such an occurrence on a block level, it would
nonetheless remain difficult to determine how to
quantify learning. Finally, the parametric model of
perceptual learning is inappropriate for fitting data that
is collected via staircase techniques. This is because
data collected via staircases (a) rarely includes sufficient
spread in stimulus strength to estimate a full psycho-
metric function and (b) what spread in stimulus
strength is present is usually highly biased in time, with
trials of higher stimulus strength occurring early in the
block and trials of lower stimulus strength occurring
mainly later in the block (although we note that there
are several interesting approaches to examining trial-
by-trial data that is generated by staircase techniques,
e.g., Ghose, Yang, & Maunsell, 2002; Yang &
Maunsell, 2004). There are absolutely a wide range of
situations that call for staircase methodology (e.g.,
when a threshold needs to be estimated very quickly, or
when the range of stimulus intensities to present is
unknown or could potentially vary substantially
between individuals). However, we would suggest that
in most learning experiments (which typically involve

thousands of trials and where typical performance is
usually reasonably well known) staircases could easily
be replaced by methods that are more amenable to the
analysis techniques described here. These methods
could be augmented by using the technique to adapt
level of difficulty so as to maximize learning.

Indeed, it is certainly the case that, given the analysis
methods developed and demonstrated here, the meth-
odology that was used to produce the current data can
be significantly improved going forward. Specifically,
stimulus strength in all cases was drawn from a static
uniform range throughout training. This then neces-
sarily meant that as learning proceeded, more and more
of the range resulted in ceiling level performance, which
is neither ideal with respect to measuring ability (as the
far ceiling part of the curve does not help constrain the
psychometric function) nor with respect to producing
learning (although there is certainly virtue to having
some easy trials, it is generally accepted that learning is
most efficient when the task is challenging, but
doable—when errors are being made, but these errors
are informative; Chu, Dosher, & Lu, 2010). It is thus
possible that there could be virtue to using the current
completely offline analysis approach in an online
manner to control the range over which stimulus
strength is sampled. This would, in some ways, be the
best of both worlds—the uniform random sampling of
stimulus strengths allows for continuous estimates of
learning—and drifting that range provides a natural
way to keep difficulty level constant throughout
training (without having to rely on staircases).

Conclusions

Here, we have presented a method to parametrically
fit the changes in the psychometric function occurring
in perceptual learning studies. Future work with larger
datasets will be necessary to identify the best param-
eterizations of both learning functions and the psy-
chometric functions (and the correct parameterizations
may differ across learning domains). Indeed, we note
that we ourselves have used a slightly different
parameterization in our previous empirical work
(Green et al., 2015; Kattner et al., 2017), which used
even fewer free parameters, at the cost of additional
flexibility. The best tradeoff between these is thus also
to be determined. Furthermore, it is likely the case that
this approach will be fruitful for analyzing perceptual
learning experiments that use alternative designs—such
as target present/target absent designs (Ahissar &
Hochstein, 1997); however, the parameterization will
similarly need to be altered to account for the difference
in design. In all, the current data clearly demonstrates
that continuous parametric fitting is a flexible tool that
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allows for these comparisons to be made using few free
parameters and without assuming within-block statio-
narity.

Keywords: psychometric function, perceptual learning,
parametric model
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