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Summary

Action video game play benefits performance in an array of

sensory, perceptual, and attentional tasks that go well
beyond the specifics of game play [1–9]. That a training

regimen may induce improvements in so many different
skills is notable because the majority of studies on training-

induced learning report improvements on the trained task
but limited transfer to other, even closely related, tasks

([10], but see also [11–13]). Here we ask whether improved
probabilistic inference may explain such broad transfer. By

using a visual perceptual decision making task [14, 15], the
present study shows for the first time that action video

game experience does indeed improve probabilistic infer-
ence. A neural model of this task [16] establishes how

changing a single parameter, namely the strength of the
connections between the neural layer providing the momen-

tary evidence and the layer integrating the evidence over
time, captures improvements in action-gamers behavior.

These results were established in a visual, but also in a novel
auditory, task, indicating generalization across modalities.

Thus, improved probabilistic inference provides a general

mechanism for why action video game playing enhances
performance in awide variety of tasks. In addition, thismech-

anismmay serve as a signature of training regimens that are
likely to produce transfer of learning.

Results

Visual Motion Direction Discrimination: Experiment 1

To test the hypothesis that video game experience leads to
improved probabilistic inference, video game players (VGPs)
and non-video game players (NVGPs) were first compared
on a standard coherent dot motion direction discrimination
task [14]. In this task, subjects viewed a dynamic random dot
motion display and were asked to indicate the direction of
coherent motion (left or right) as quickly and accurately as
possible by means of a key press (Figure 1A).

One of the benefits of this task is that psychometric and
chronometric curves are well captured by diffusion-to-bound
models (DDM) or variations thereof [17–27] as well as a recent
neural model of decision making [16], which, unlike the stan-
dard DDMs, has a clear probabilistic interpretation. This inter-
pretation is based on recent theories in which neural patterns
of activity represent probability distributions over the encoded
variables [28–31]. Critically, this allows us to assess whether
the changes that arise as a result of video game experience
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meet our standards for improved probabilistic inference.
These can be defined rigorously in the task we chose by
considering decision making from a probabilistic perspective.
Before committing to a choice, the best a subject can do is to
compute the probability that each choice is correct given all
the evidence up to the present time, a distribution also known
as the posterior distribution over choices (which we denote
p(cje) where c are the choices and e is the evidence). This
computation requires knowledge of p(ejc), the statistics of
the evidence. Indeed, throughBayes rule, p(cje) is proportional
to p(ejc). In general, subjects do not initially know the statistics
of the evidence, which in turn means that the calculated
posterior distribution over choices is not the optimal one.
However, through repeated exposure to a task, subjects
have the opportunity to learn these statistics and, as a result,
can make decisions on the basis of a more accurate posterior
distribution. This type of improved inference is what we mean
by making better use of the evidence.
The DDM fits to the data provide support for this hypothesis.

The results show an overall decrease in decision bound, no
change in nondecision time, and crucially a greater integration
rate in the VGP population (Figures 1B and 1C). This latter
result indicates increased sensitivity in VGPs suggesting that
VGPs may indeed make better use of the evidence than
NVGPs. Yet to definitively make this point, it is necessary to
demonstrate that VGPs use better posterior distributions
over choices than those used by NVGPs. Because the DDM
used here does not provide a natural way to compute a poste-
rior distribution (particularly when the coherence varies over
trials), we took advantage of a recent neural model of probabi-
listic decision making [16] in which the state of the network
encodes the posterior distribution over choices given the
evidence (Figure 2A).
We first used this model to fit the psychometric and chrono-

metric curves of VGPs andNVGPs via a numerical optimization
procedure (Figure 2B; for details see Supplemental Experi-
mental Procedures, part A available online). Data from VGPs
were well modeled by assuming only an increase in the
strength of the feedforward connectivity between the two
layers of the network representing areas MT and LIP as
compared to NVGPs. A change in this single parameter natu-
rally accounts for the finding that only RTs change whereas
accuracy stays constant. Consistent with this proposal, Law
and Gold [32, 33] recently showed that improved performance
on a motion discrimination task after extensive training on the
motion task itself is also captured by strengthening the
connections between the sensory and integration layers.
We then asked whether action video game experience is

indeed associated with a better posterior distribution for
a fixed amount of evidence. In the case of a binary decision
task (i.e., left versus right), the quality of this posterior distribu-
tion can be assessed by calculating the log odds (i.e., the log of
the ratio of the probability that the dots move rightward over
the probability that the dots move leftward). Because the log
odds in the model reflects the quality of the evidence available
to the decision maker, if action video-game players do make
better use of the evidence, we should find an increase in the
absolute value of the log odds in their model. This is indeed

mailto:daphne@cvs.rochester.edu


A B C

Figure 1. Visual Motion Direction Discrimination

(A) Task. Subjects viewed a dynamic random dot motion display and were asked to indicate the net direction of motion (left or right; here, the correct answer

would be right). On every trial, some proportion of the dots moved coherently (top, 50% coherence; middle, 25% coherence; bottom, 0% coherence) either

to the left or to the right, while the remaining dots were replotted randomly. By parametrically varying the number of coherently moving dots from very few to

many, full psychometric and chronometric curves could be obtained.

(B) Behavior. Although VGPs and NVGPs demonstrated equivalent accuracy (p = .65, p-eta2 = .01) (top), VGPs responded substantially faster than NVGPs

(F(1,21) = 18.9, p < .001, p-eta2 = .47) (bottom). Importantly, VGP status interacted with coherence because of a greater decrease in RTs in VGPs at low

than high coherence (F(6, 126) = 3.5, p < .001, p-eta2 = .15).

In this and all other psychometric and chronometric curve figures, error bars correspond to between-subject standard error.

(C) Drift diffusion model (DDM). The accumulation of the noisy sensory evidence is simulated by the diffusion of a particle upward or downward until a deci-

sion bound is reached. DDMmodels generate psychometric and chronometric curves that are constrained by three main variables [14]: (1) the rate at which

information is accumulated over time, (2) the height of the decision bound at which the system stops accumulating evidence and a decision is made, and (3)

the nondecision time, an additive amount of time that is common to all tasks and reflects nondecision processes such as motor planning and execution. To

quantitatively assess the individual contribution of integration rate, decision bound, and nondecision time, RT and accuracy data were simultaneously fit

to each subject’s data with the proportional-rate diffusion model as in Palmer and colleagues [14]. The fits were good and equivalent in the two groups

(r2VGP = .93, r2NVGP = .90, p = .36). The rate of integration was greater in the VGP than the NVGP group (t(21) = 2.6, p = .02, Cohen’s d = 1.13, top), whereas

the opposite result was observed for the decision bound (t(21) = 3.6, p = .002, Cohen’s d = 1.57, middle). No difference was observed between the groups in

nondecision time (p > .7, Cohen’s d = 0.14, bottom), eliminating an additive, postdecision process as a possible source of group differences. Data from

individual subjects were fit separately and error bars correspond to between-subject standard error.
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what was observed, with the log odds being 19% higher on
average across all coherences, confirming that, according to
the probabilistic population network, VGPs make better use
of the evidence than NVGPs (for details see Supplemental
Experimental Procedures, part A).

Auditory Tone Location Discrimination: Experiment 2
A key question concerns the generalization of this finding to
other tasks and domains. To ask whether the improved proba-
bilistic inference noted in VGPs generalizes to other tasks and
domains, an auditory analog of the motion direction task was
developed (Figure 3A, for details see Supplemental Experi-
mental Procedures, part B). As in themotion task, performance
on the task requires the accumulation of information over time,
and thus the intuitions regarding sensitivity and decision
bound are similar and can be modeled in the same manner.
The results in Experiment 2 mirror those of Experiment 1 quite
closely (Figure 3B). In the DDM, the integration rate parameter
was significantly greater in VGPs than in NVGPs, confirming
greater sensitivity to the stimulus in VGPs. The decision
bound parameter was significantly smaller in VGPs than
in NVGPs and no significant difference was observed in the
nondecision time parameter. The neural model confirmed
that the difference between NVGPs and VGPs can be captured
by changing solely the strength of the feed-forward connec-
tions (by 51%, Figure S1A). We further confirmed that VGPs
do indeed make a better use of the evidence in this paradigm,
with log odds being 48% higher on average across all levels of
signal to noise ratio in VGPs as compared to NVGPs.

Video Game Training: Experiment 3
Although our hypothesis is that extensive video game experi-
ence is at the root of these changes, it could also be the
case that VGPs are individuals who have been born with
improved abilities at performing probabilistic inferences. To
establish that video game experience is sufficient to drive
a better use of the evidence, NVGPs underwent 50 hr of video
game training on either action video games or a control video
game. If action video game experience does improve probabi-
listic inferences in neural circuits, larger improvements should
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Discrimination

(A) Neural Network Architecture. The network

consists of two interconnected layers of neurons

with Gaussian tuning curves. In MT, the sensory

layer, the tuning curves are for direction ofmotion,

whereas in LIP, the integration layer, the tuning

curves are for saccade direction, as a proxy in

our case for a left/right decision. Note that we do

not mean to say that LIP is the only area involved

in this process—the label is used mostly for

convenience (the same is true for the MT label

in the input layer). The layers differ by their

connectivity and dynamics. The MT neurons

send feed-forward connection to the LIP neurons.

Each LIP neuron receives a Gaussian pattern of

weight centered on the MT neuron with the same

preferred direction. The LIP neurons also have

lateral connections to implement short-range

excitation and long-range inhibition as well as

a long time constant (1 s) allowing them to inte-

grate their input. Each panel indicates a represen-

tative pattern of activity in terms of spike count

200 ms into a trial for the sensory layer (MT,

bottom) and the integration layer (LIP, top).

(B) Neural Model Fit. As with the DDM, the fits

were good and equivalent for the two groups.

The neural model captures the change in perfor-

mance from NVGP to VGP with a 55% increase

in the conductance of the feed-forward connections between the sensory (MT) and the integration (LIP) layers and, in contrast to the DDM, nearly no change

in the bound height (a 1% decrease, which is within the resolution of our numerical maximization procedure; see Supplemental Experimental Procedures,

part A). The conductance controls the amount of information transmitted from the sensory layer to the integration layer per unit time, or the strength of the

feed-forward connections. It is important to note that this effect is not analogous to a simple change in sensitivity in DDMs. Although increasing the conduc-

tance does increase the amount of information transmitted from the sensory to the integration layer (which intuitively should increase accuracy), it also

induces large fluctuations in the membrane potential of the neurons. These fluctuations lead the network to reach the bound faster, thus lowering the

percentage of correct responses. These two effects cancel one another over a wide range of parameters, allowing a single change in feed-forward strength

to alter reaction time while leaving the psychometric curve nearly unchanged. Model fit corresponds to best fit to the mean data rather than the mean of

individual fits.
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be noted in the action-trained group than in the control group.
This prediction was confirmed because the results of this
training study are nearly identical to the results of Experiments
1 and 2 (Figure S2, for details see Supplemental Experimental
Procedures, part C). Critically, better use of the evidence was
noted only in the action group at posttest. The log odds for the
motion task were 16% (respectively 31% for auditory) higher
on average across all levels of coherence (respectively SNR)
at posttest as compared to pretest for the action group (see
Figure S3). The results of this experiment therefore confirm
the causal relationship between action video game experience
and improvements in probabilistic inference.

Ruling out Alternative Accounts—Critical Duration Study:
Experiment 4

A remarkable feature of our results is that action video game
experience leads to a decrease in RTs while leaving accuracy
unchanged. At first sight, this pattern could be consistent
with a reduction in nondecision time, for instance, through
a decrease in motor latencies. However, a change in nondeci-
sion time alone cannot capture the present data because it
predicts a constant difference between VGP and NVGP reac-
tion time as coherence varies, whereas we report larger reac-
tion times differences at lower than higher signal strengths.
This was confirmed by our fitting procedure, which revealed
that the sensitivity and the bound height must be changed
to capture our data, and that nondecision time is in fact not
significantly different across populations. Nonetheless, to
confirm our key result, namely that the sensitivity to stimuli
has increased between NVGPs and VGPs, we ran our motion
and auditory tasks in a condition in which stimuli were pre-
sented for fixed durations and the subjects were instructed
to watch/listen to the entire stimulus before reporting their
decision. We then plotted the accuracy of the response as
a function of duration. Because this task does not involve
speeded reaction time, nondecision time is irrelevant in
accounting for these data (for details see Supplemental
Experimental Procedures, part D).
As predicted by higher sensitivity in VGPs than in NVGPs, we

found the rate with which accuracy increases as a function of
duration (the parameter b in Figure 4) to be higher in VGPs
[34, 35]. Simulations of the drift diffusion model with fixed
duration confirmed that a change in sensitivity between
VGPsandNVGPs is required to account for the data in Figure 4.
We first ran a simulation in which the sensitivity for VGPs and
NVGPs were set to be equal, while the bounds heights were
independently adjusted for VGPs and NVGPs to maximize
the fit to the experimental data. This simulation revealed that
it is impossible to capture the faster rise of accuracy for
VGPs, particularly for short durations (Figures S4A and S4B).
Next, to determine whether the change in sensitivity estimated
from Experiments 1 and 2 can account for the critical duration
data, we ran simulations in which the sensitivity ratios between
VGPs and NVGPs were the same as estimated from the reac-
tion time experiments (E1 and E2). Under these conditions,
themodel captures the results in Figure 4 well, thus confirming
that sensitivity must be higher in VGPs compared to NVGPs
(Figures S4C and S4D).
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Figure 3. Auditory Tone Location Discrimination

(A) Task. A pure tone embedded in a white noisemask was presented in one ear, while white noise alone was presented in the other (both ears being normal-

ized to the samemean amplitude). The subjects’ task was to indicate with a button press the ear in which the tone was present as quickly and accurately as

possible. In a manner consistent with adjusting the coherence level of the motion stimulus, the ratio of the amplitude of the target tone to the white noise

mask was manipulated in order to test performance across the range of possible accuracy levels and reaction times (high amplitude, top; low amplitude,

bottom).

(B) Behavior. As in Experiment 1, VGPs and NVGPs demonstrated equivalent accuracy (p = .32, p-eta2 = .05) (top), VGPs responded substantially faster than

the NVGPs (F(1,21) = 20.6, p < .001, p-eta2 = .50) (bottom), and the RT difference between groupswas greater at lower signal-to-noise ratios (SNR) (F(7,147) =

5.2, p < .001, p-eta2 = .2).

(C) Drift diffusion model. The rate of integration was greater in the VGP than the NVGP group (t(21) = 3.8, p = .001, Cohen’s d = 1.66) (top), while the opposite

result was observed for the decision bound (t(21) = 2.6, p = .02, Cohen’s d = 1.13) (middle). No difference was observed between the groups in nondecision

time (p > .05, Cohen’s d = .82) (bottom). Data from individual subjects were fit separately and error bars correspond to between-subject standard error.
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Discussion

Action video game experience results in more efficient use of
sensory evidence. Importantly, these improvements are not
restricted to the visual modality, but appear in the auditory
modality as well. Moreover, 50 hr of action video game training
led to qualitatively similar results in a group of NVGPs, estab-
lishing a causative relationship between action video game
experience and improved probabilistic inference.

To establish the role of improved statistical inference in VGP
performance, full chronometric and psychometric curves were
measured. Using DDMs, increased sensitivity (along with
a compensatory decrease in bound) provided the best fit to
the data, thus confirming the hypothesis that video game
play results in a more efficient use of the evidence. That statis-
tical inference is improved in gamers was further confirmed by
establishing enhanced performance in gamers in fixed dura-
tion paradigms. Note that these results were far from being
a foregone conclusion. Although faster RTs in gamers were
expected, this could have resulted from a speed-accuracy
tradeoff through a change in the decision bound and/or faster
motor execution through a change in the nondecision time,
without concomitant changes in sensitivity. In contrast, the
six experiments presented establish the role of increased
sensitivity in gamers’ performance.
The neural model framework provides converging evidence
for this claim because it captures VGP behavior by enhancing
the connection strength between the layer providing the
momentary sensory evidence and the layer integrating the
evidence, leading to a more efficient use of the evidence.
Increasing the connection strength not only increases
the amount of information per unit of time transmitted to the
output layer but also induces larger fluctuations in the
membrane potential of neurons, which in turn lead the network
to reach the bound faster. The net effect on accuracy is negli-
gible because the output layer receives more information per
unit of time, but integrates information over shorter durations.
As a result, the percentage of correct responses at the bound
remains stable. A novel contribution from the neural model
therefore is that it naturally accounts for one striking regularity
of the data with just one parameter change, and crucially this
parameter controls the quality of the statistical inference.
One might wonder why the nervous system does not keep
the feedforward weights set to a maximum value since our
results show that increasing the feedforward weights leads
to better performance. This might be in part because of the
metabolic cost of maintaining synapses with high efficacies.
But, more importantly, it is not the case that increasing
the feedforward weights always increases performance. We
have found analytically that there is an optimal value of the
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Figure 4. Critical Duration Experiment Results

Accuracy of the VGPs and NVGPs for two levels of visual coherence (A) and two levels of auditory SNRs (B) as a function of presentation duration (see

Supplemental Information).

Individual subject data were modeled as a simple exponential rise to an asymptote (VGP = thinner lines; NVGP = thicker lines) using %Correct(t) =

l(1- e-b(t- d))+50%, where lambda (l) is the level of asymptotic performance, beta (b) is the rate at which accuracy grows as a function of time, and delta

(d) is the intercept or the time at which accuracy rises above chance levels [35]. In both the DDM and the neural model, faster accumulation of information

predicts greater rate (b) value in the VGPs. This prediction was confirmed (visual motion: VGP, 8.16 1.1; NVGP, 4.86 1.1; F(1,21) = 4.6, p = .045, p-eta2 = .19;

auditory tone: VGP, 24.5 6 3.9; NVGP, 12.9 6 3.8; F(1,21) = 4.5, p = .044, p-eta2 = .18), demonstrating again a greater rate of sensory integration in VGPs.
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feedforward weights, beyond which a further increase
worsens performance (J. Beck, V. Bejjanki, and A.P., unpub-
lished data). The optimal value of the weights depends on
the statistics of the spike trains in the sensory layer.

The fact that action gamers perform better probabilistic
inference is appealing because it provides a unified mecha-
nism to explain why action video game training improves
participants’ performance in seemingly widely different tasks
such as contrast detection, visual search, multiple object
tracking, letter recognition with flankers, and decision making
[1, 6, 7, 9, 36]. However, such an improvement may also have
much wider implications. Decision making can be formalized
as a probabilistic inference in which subjects must compute
the posterior distribution over choices given the evidence at
each time step [37–39]. This iterative process requires that
the posterior distribution at the previous time step be multi-
plied by the likelihood of the evidence at the present time
step (see Equation A1 in Supplemental Experimental Proce-
dures). To be done optimally (i.e., without loss of information),
this process requires both that the multiplication step be
faithfully executed and also that the subjects have perfect
knowledge of the likelihood function, which is to say, perfect
knowledge of the statistics of their sensory input. It is highly
unlikely that our subjects came to the task equipped to
perform optimally from the get-go. At the beginning of the
experiment, our subjects were naive to the visual and auditory
stimuli. Their lack of knowledge of the statistics of our partic-
ular stimuli would initially result in a poor estimate of the likeli-
hood of the visual or auditory evidence. Similarly, subjects
were initially naive to the inference task used in our studies.
Consequently, they had to learn the statistics of our particular
stimulus set (more accurate likelihood of the evidence) as well
as the appropriate inference for this task (performing themulti-
plication that permits the update over time of the posterior
distribution). One possibility is that VGPs perform better in
those tasks because they learn a better model of the stimuli
used and/or perform the inference more accurately [32], which
in turn leads to a better posterior distribution.
This proposal is closely related to a dominant idea in the field

of perceptual learning by which learning occurs through
template matching by reweighting the connectivity between
sensory and decision stages [40–42]. Law and Gold [32, 33]
have recently documented how the effective connectivity
between MT and LIP changes as monkeys are trained and
then testedwithmotion stimuli similar to ours. Our results build
on this work but establish that such a reweighting is not neces-
sarily the product of extensive training with a specific class
of stimuli as is standard in the field of perceptual learning.
Indeed, improvements after action game training are not
limited to playing the game itself, but generalize to new tasks.
Gamers, we propose, acquire the ability to dynamically retune
the connectivity between the momentary evidence layer and
the layer integrating the evidence based on the statistics
of the very task they are performing.
This type of learning may be a consequence of the nature of

action video game training. Unlike standard learning para-
digms, which have a highly specific solution, there is no such
specific solution in action video games because situations
are rarely, if ever, repeated. Thus, the only characteristics
that can be learned are how to rapidly and accurately learn
the statistics on the fly and how to accumulate this evidence
more efficiently. We can only speculate as to what might be
the neural mechanisms responsible for this remarkable
transfer of learning, because there are several possibilities.
First, the neural circuits involved in evidence accumulation
might be shared across modalities, a plausible explanation
given that the cortical areas that have been implicated in
evidence accumulation are often multimodal [43]. Second,
these areas are likely to be under the influence of shared
fronto-parietal networks, providing a common source for per-
formance improvements, a view supported by the impact of
working memory training in cognitive improvements [44–46].
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Finally, learning might involve the global release of neuromo-
dulators that improve probabilistic inferences across all
circuits, as has been proposed for instance for noradrenalin
[47]. An important issue for future work will be to determine
the relative role of these mechanisms in fostering such
a wide transfer of learning.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at doi:10.1016/

j.cub.2010.07.040.
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