
Network architecture. The network model, adapted from Bejjanki et al. (27),
consists of two visual processing stages that simulate the representation and
transmission of orientation information across neural layers, followed by
a decoding stage that simulates the observer’s decision about the target
orientation. The first visual stage simulates the processing of stimulus in-
formation early in the visual system akin to the retina and the lateral ge-
niculate nucleus. The input layer includes uncoupled grids of ON and OFF
center ganglion cells modeled as difference-of-Gaussian filters, which are
driven by the noisy stimulus image. The output of each filter is passed
through a smooth nonlinearity and used to drive cells in visual stage 1, which
includes uncoupled, spiking neurons generating Poisson spikes. The output
spikes from stage 1 cells are pooled using oriented Gabor function receptive
fields, the orientations of which are uniformly distributed along a circle. This
pooled output is then used as input to the second visual stage, which sim-
ulates a cortical visual area such as V1. This visual stage 2 represents an
orientation hypercolumn—a set of neurons with receptive fields centered at
the same spatial location but with different preferred orientations—of
Linear Nonlinear Poisson (LNP) neurons, coupled through lateral con-
nections. The final stage of the network, which simulates the decision stage,
includes a single unit, with connections to each of the cells in visual stage 2,
which takes as input the activities of stage 2 units and which gives as output
an estimate of the orientation of the stimulus. Although the format of the
representations considered in the present neural implementation corre-
sponds to early visual stages of processing, we are not in a position to de-
termine whether these may correspond to the actual processing levels at
which action game play acts. Rather, the goal of this neural implementation
is to demonstrate how changes in feed-forward connectivity, as information
travels from one visual area to another, naturally give rise to enhanced
perceptual templates, by allowing improved probabilistic inference.
Computing orientation identification performance and deriving TvC curves. As in
Bejjanki et al. (27), we use a recently derived analytic expression for linear
Fisher information in a population of LNP neurons with a fixed decoder, to
compute the Fisher information, and hence the identification threshold, at
the decision stage in response to a given stimulus. We compute Fisher in-
formation at the decision stage using stimuli with 17 signal contrast levels—
10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, and 90%—and with
the eight levels of external noise used in our behavioral experiments. We

then derive network TvC curves by computing an iso-information contour,
for a value of information that is equivalent to the percent correct criterion
used in the behavioral experiments (computed via signal detection theory),
through the resulting information matrix (see Supporting Information and
ref. 27 for further details).

Experiment 3: Dynamics of Perceptual Template Learning in AVGPs.
Participants. Ten NVGPs (six male and four female; 19–31 y old, mean age 25.1 y)
and 10 AVGPs (seven male and three female; 18–26 y old, mean age 20.1 y)
participated in the experiment. All participants were chosen using similar pro-
cedures and screening criteria as those used in experiment 1. None had partici-
pated in experiments 1 or 2.
Stimuli and procedures. The stimuli and task were similar to those used in Jeter
et al. (28), except that only the high noise contrast (33%) and low precision
(±12°) stimuli were used. A typical trial is illustrated in Fig. 5A. On each
trial, stimuli were presented in the periphery at one of two locations (in
the northeast or southwest quadrants for half the participants and in the
northwest or southeast quadrants for the other half; Fig. 5A, Inset). The
reference orientation (−35°/+55°) and the diagonal in which the stimuli
were located (northeast or southwest quadrants/northwest or southeast
quadrants) were randomly assigned to each subject and counterbalanced
and matched across groups. Each participant carried out a total of eight
sessions (four sessions per day over 2 d) with 312 trials per session. In each
session, four randomly interleaved staircases—two-up-one-down and three-
up-one-down for each of the two stimulus locations—were used. Signal
contrast thresholds were estimated by averaging all of the reversals in each
staircase, except the first three reversals. Overall contrast thresholds for each
participant were then computed by averaging the thresholds across all four
staircases, thereby converging to the 75% correct threshold.
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SI Note 1: Experimental Procedures
Experiment 1: Performance in External Noise in AVGPs.
Participants. All 10 male NVGPs and 10 male AVGPs who par-
ticipated in this experiment had normal or corrected-to-normal
vision as measured with the logarithmic visual acuity chart “2000”
(Early Treatment for Diabetic Retinopathy Study). All participants
provided informed written consent and were paid $8 per hour.
Participants completed the same video game playing question-

naire, aimed at establishing their video gaming history in the 12 mo
before testing, as in ref. 1. Participants who reported playing at
least 5 h of action video games per week during the past year were
classified as AVGPs. Qualified action video games included first-
person and third-person shooter games such as Unreal Tourna-
ment, Counter Strike, Halo, Call of Duty, and so on. Participants
who had little to no action video game experience (less than 1 h
per week) during the past year were classified as NVGPs; note that
most NVGPs did play other kinds of games, such as board games,
puzzle games, card games, strategy games, or social games.
Stimuli and procedure. Stimuli were displayed on a ViewSonic
Graphics Series G225f CRT monitor with 1,024 × 768 pixel reso-
lution and 120-Hz refresh rate, driven by a Mac OS X 10.4.11
system. A video switcher was used to combine two 8-bit output
channels of the graphics card so that the display system could
produce gray levels with 14 bits of resolution (2). Participants were
tested in a dark room, with the mean display luminance set to
58 cd/m2, and viewing distance set to 59 cm. Monitor gamma
was calibrated by fitting the best power function to the measured
luminance level (Minolta Chromameter, CS-100) of 10 different
gray-level settings (from 0 to 240) of the monitor (full field).
The stimuli and task were similar to those of Lu andDosher (3),

except that the size (1.5 × 1.5°), degree of tilt (±2°), and refer-
ence angle (horizontal) were different. The stimuli were Gabor
signals. The luminance distribution of the Gabor signal is de-
scribed by the following equation:
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�
2πf
�
x cos

�
θ
�

+ y sin
�
θ
���

p exp
�
−
�
x2 + y2

��
2σ2
��
;

where θ= radð0°± 2Þ, l0 is the background luminance, f = 2 cycles/
degree is the center spatial frequency of the Gabor signal, σ =
0.375° is the SD of the Gabor’s circular Gaussian envelope, and
peak contrast c was determined by the adaptive staircase proce-
dures (described below). External noise images consisted of pixels
with contrasts independently drawn from an identical Gaussian
distribution. To increase the noise energy in the task-relevant spa-
tial frequency channels, external noise images were filtered by
a band-pass filter with spatial frequencies ranging from one octave
below to one octave above the spatial frequency of the Gabor
signals. The sizes of both the Gabor signals and the external noise
images, in terms of visual angle, were set to 1.5 × 1.5°.
A typical trial is shown in Fig. 1A of the main text. After

a central fixation cross was presented for 250 ms a Gabor signal
frame was presented, sandwiched between two external noise
frames, for 16.7 ms per frame. The Gabor signal was tilted 2°
clockwise or counterclockwise from 0°, with participants indi-
cating the orientation of the Gabor—clockwise or counterclockwise
from horizontal—using a key press. Participants received auditory
feedback on their performance. Eight external noise contrast levels
(0, 2.1, 4.1, 8.3, 12.4, 16.5, 24.8, and 33%) were used in an inter-
leaved fashion, and for each level of external noise two interleaved
staircase procedures were used, with step sizes of 10% of the

current contrast level, so as to converge upon the 79.37% or
70.71% signal contrast threshold (a three-down-one-up or a two-
down-one-up staircase, respectively). Signal contrast threshold
was defined as the mean of all of the reversals, excluding the first
four. For each three-down-one-up staircase there were 100 trials
and for each two-down-one-up staircase there were 80 trials,
leading to a total of 1,440 trials per session. To improve our
estimates, each participant carried out two such sessions in a row
for a total duration of 1.5 h.

Experiment 2: Performance in External Noise After Action Video
Game Training.
Participants. Thirty-six NVGPs (selected using the same video
game experience criterion as in experiment 1 above) were initially
recruited to participate in this training experiment andwere divided
randomly into an action group and a control group. However, not
all recruited participants completed all parts of the experiment.
The final sample included 12 action group participants (9 males
and 3 females, 20–28 y old, mean age 23.9 y) and 14 control group
participants (5 males and 9 females, 20–28 y old, mean age 22.6 y).
Excluded participants included five female participants in the
action group and two male participants in the control group
who dropped out early during the video game training phase
(described below) because of motion sickness or an inability to
comply with the demanding schedule of the training, one male
participant who was excluded from the control group owing to an
inability to perform the noise-exclusion task at pretest, and two
female participants who were excluded from the action group
because one never learned to play the second action game used
in the training study and the other did not conform to the pre-
scribed schedule of training.
Video game training procedure. For both groups training consisted of
playing two games for a total of 50 h (25 h per game). During the
first 25 h of training, participants in the action group played the
game Unreal Tournament 2004 (Epic Games) in “Death Match”
mode, where the goal is for the player to kill as many of the
computer-controlled characters as possible while minimizing
the number of deaths for the player-controlled character. During
the second half of training (next 25 h of training), the action
game trainees were switched to a second game, Call of Duty 2
(Activision). This game places the player in fictionalized World
War II combat situations, with the primary goal again being to
kill as many computer-controlled characters as possible while
minimizing deaths for the player-controlled character. Subjects
were retested on all levels of Unreal Tournament 2004 at the end
of training to assess improvement in skill.
Participants in the control group played The Sims 2 (2004,

Electronic Arts Inc.) for the first half of training and Restaurant
Empire (2003, Enlight Software Ltd.) for the second half of
training. The Sims 2 is a simulation-style game, wherein the
player takes complete control over the simulated daily life of
a character, from everyday activities (eating, bathing, etc.) to
going to work, managing relationships with other characters,
getting married, having and raising children, and eventual old
age. As characters are added to the household the player takes
control of those characters as well. Restaurant Empire is also
a simulation-style game, wherein the player takes complete
control of the simulated operation of restaurants, from de-
veloping recipes and menus to decorating restaurants, handling
customers, and joining cooking competitions.
The training games for both the action and the control groups

covered the entire display screen (visual angle of ∼15° high × 18°
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wide). Each group was requested to log their performance reg-
ularly (control game: accumulated wealth; experimental game:
ratio of kills to death). In addition, because the action games did
not control player advances in a systematic fashion, action group
participants were required to reach a ratio of two kills for one
death before they could advance to a harder level. This ensured
that players progressed through the game smoothly, thereby
avoiding long periods of frustration because the game became
too hard or boredom because the game became too easy. This
was not an issue with the control game, which progressed auto-
matically through increasingly advanced situations.
Stimuli and procedure for pre- and posttest tasks. Participants were
tested a few days before and a few days after the training period
(designated as pretest and posttest, respectively) on the same
orientation identification under external noise task as that used in
experiment 1.
In addition, all participants were asked to fill out the “flow”

questionnaire as defined by Csikszentmihalyi (4) after every 10 h
of video game training, as well as after the pre- and posttest. This
allowed us to assess participants’ engagement with the training
games at different times during training. We were especially
interested in determining whether the two training games were
equally engaging. The specific questionnaire we used included 36
questions, covering four domains (enjoyment, attention, reward,
and confidence). Participants answered each question by se-
lecting one of five answers that ranged from “strongly disagree”
to “strongly agree,” scoring 1–5, respectively.
RAPM.All participants were administered the RAPM at pretest to
ensure participants across groups were matched in fluid in-
telligence, because differences in such aspects of intelligence have
previously been related to differences in performance on per-
ceptual tasks (5, 6). Raven scores, at pretest, were comparable
between the two groups [mean score for AVGPs = 30 and mean
score for NVGPS= 28.6, t (20) = 0.85, P = 0.41, two-tailed],
indicating matched fluid intelligence across the two groups. Note
that the exact same RAPM test was also administered at post-
test. Both groups improved by a comparable amount from pre-
to posttest [from a mean of 30–32.8 for AVGPs and from a mean
of 28.6–29.4 for NVGPs, F(1,20) = 5.31, P = 0.03, η2 = 0.21; no
group effect, no interaction]. This pattern likely reveals a change
in participants’ familiarity with the specific test items, rather than
a true change in fluid intelligence (7, 8).
Finally, various pilot data were also collected from different

subsets of the participants used here. All pilot experiments were
administered after participants had completed the reported
orientation identification task. One set of participants was tested
on two visual working memory tasks, a task-switching paradigm,
a speeded response time task, and visual tests focusing on cen-
ter–surround interactions. A different set of participants was
tested on a go/no-go task, the Posner letter identity task, a nu-
merosity estimation task, an exogenous attention task, and an
inhibition of return paradigm. The aim of these pilot experi-
ments was to refine paradigms testing these various constructs in
subsequent studies and will not be further discussed here.

Evaluating Long-Term Retention of Action-Trained Improvements in
Performance (Posttest2).
Participants. Out of the nine action group participants and seven
control group participants who were brought back to the labo-
ratory a few months after the end of their training some had been
trained 3 mo before, whereas others had been trained more than
1 y before (action-trained: five 3 mo, four more than 1 y; control-
trained: three 3 mo, four more than 1 y). This schedule is a con-
sequence of in-laboratory training studies’ being extremely time-
intensive for participants. Accordingly, training studies are run
only during the summer, so as to not interfere with participants’
academic performance. This training study was run over two
consecutive summers, yet posttest2 for all participants occurred

at one point in time. Hence, some participants were run 3 mo
after their last session (i.e., those subjects that had done the
study during the previous summer) and others more than a year
(i.e., those subjects that had done the study during the summer
before that). This is also a way for us to check the durability of
the effects over a relatively long time period. Participants were
asked about their video game habits in the intervening period
between the training study and the current test. All of the
participants reported going back to their pretest habits in terms
of video game play.
Stimuli and procedure. All of the participants were again tested
(designated as post2-test) in the same orientation identification
under external noise task as that used in experiments 1 and 2.

Experiment 3: Dynamics of Perceptual Template Learning in AVGPs.
Participants.All 10 NVGPs and 10 AVGPs who participated in this
experiment had normal or corrected-to-normal vision, provided
informed written consent, and were paid for their participation.
All participants were selected using the same video game expe-
rience criterion as in experiment 1 above.
Stimuli and procedure. Stimuli were displayed on a Mitsubishi color
graphic monitor (Diamond Pro-2070SB) with 1,024 × 768 pixel
resolution, 85-Hz refresh rate, 22 inches in size and at a viewing
distance of 58 cm. Subjects’ head position was stabilized using
a chin and forehead rest. The stimuli and task were identical to
those used in Jeter et al. (9), with the exception that only the
high noise contrast (33%) and low precision (±12°) stimuli were
used. Signal frames included a Gabor signal (subtending 3 × 3°
visual angle, orientation ±12° around a reference angle of −35°
or 55°, spatial frequency = 2 cycles/degree and SD of the spatial
Gaussian envelope σ = 0.4°). External noise frames included
a noise patch, identical in size to the Gabor signal, made up of
individual 2 × 2 pixel noise elements, with the contrast levels for
the noise elements being drawn from a Gaussian distribution
centered at the background luminance value and with an SD of
0.33 of 100% contrast. The Gabor signal and external noise
patches were presented in the visual periphery (eccentricity =
5.67°) at one of two locations (in the northeast or southwest
quadrants for half the participants and in the northwest or
southeast quadrants for the other half). The reference orienta-
tion and the locations in which the stimuli were presented were
randomly assigned to each subject and counterbalanced and
matched across groups.
A typical trial is shown in Fig. 5A of the main text. After

a central fixation cross was presented for 750 ms (the onset of
each trial was signaled by an auditory tone), a Gabor signal
frame was presented sandwiched between two external noise
frames (30 ms per frame), leading to temporal integration of the
Gabor signal with the external noise patches. Participants were
tasked with indicating the orientation of the Gabor—clockwise
or counterclockwise around the reference angle—using a key
press. Auditory feedback was provided after the participants’
choice. Each participant carried out a total of eight sessions, four
sessions per day over 2 d, with 312 trials per session. In each
session, four randomly interleaved staircases—two-up-one-down
and three-up-one-down staircases for each of the two stimulus
locations—were used. Signal contrast thresholds were estimated
by averaging all of the reversals in each staircase, excluding the
first three reversals. Overall contrast thresholds for each par-
ticipant were then computed by averaging the thresholds across
all four staircases, thereby converging to the 75% correct threshold.
In the first session, staircases quickly hovered around a signal
contrast of about 0.77 for NVGP and AVGPs (Fig. S3). In sub-
sequent sessions, to achieve efficient estimation, initial signal
contrast levels for the two 2/1 and the two 3/1 staircases were
computed by averaging the estimates from the corresponding
2/1 and 3/1 staircases from the immediately preceding session.
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SI Note 2: Overview of the PTM
The PTM. Limited by nonlinear signal transduction as well as by
many sources of variability, such as intrinsic stimulus variability,
receptor sampling error, variability in neural responses, and loss
of information during neural transmission, human perception
exhibits many inefficiencies. Since the 1950s, sensory psycholo-
gists have adopted the equivalent input noise method, used by
electrical engineers (10) to measure the intrinsic noise of am-
plifiers, to characterize the limiting noise in perceptual processes
(11–15). In a typical application, this method systematically adds
increasing amounts of external noise to the signal stimulus and
observes how threshold (i.e., signal stimulus energy required for
an observer to maintain a predetermined performance level) de-
pends on the amount of external noise (Fig. S1). This threshold vs.
external noise contrast (TvC) function can then be used to specify
the sources of perceptual limitations in an observer model, which
maps external stimuli to internal perceptual representations and
predicts human performance using a decision process such as
signal detection theory.
A number of components, derived from both sensory psy-

chology and physiology, have been used to construct observer
models, including a perceptual template, a nonlinear transducer,
additive noise, multiplicative noise, and a decision rule (13, 14,
16–18). For example, internal additive noise is associated with
absolute thresholds in perceptual tasks and internal multiplica-
tive noise is associated with Weber’s law behavior of the per-
ceptual system. In the PTM (Fig. S2), perceptual inefficiencies
are attributed to three limitations: internal additive noise, in-
ternal multiplicative noise, and perceptual templates (imper-
fectly) tuned to the target stimuli. Lu and Dosher (19) carried
out an extensive analysis of all of the major existing observer
models, including a linear amplifier model (13), a multiplicative
noise model (20), and a multiplicative noise plus uncertainty
model (17). The classical observer models are reduced cases of
the PTM. The PTM accommodates all of the known standard
properties of data in the equivalent input noise literature, as well
as providing the best qualitative and quantitative account of
a range of particular data sets.
The central idea behind the PTM is that of a filter or template

through which the signal is passed so as to optimize pattern
recognition; the efficiency of that filter is under the control of five
main components (Fig. S2): (i) a contrast gain to the signal β that
is normalized relative to its gain to the external noise, (ii)
a nonlinear transducer function that raises its input to the γth

power, (iii) a Gaussian-distributed internal multiplicative noise
term with mean 0 and SD proportional to (Nm × ) the contrast
energy in the input stimulus, (iv) a Gaussian-distributed additive
internal noise term with mean 0 and “constant” SD Na, and (v)
a decision process. In the PTM, accuracy of perceptual task
performance is indexed by d′ (18, 19):
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For a given performance level, d′, we can solve Eq. S1 to
express threshold contrast cτ as a function of external noise (Next)
in log form:
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Mechanisms of Performance Improvement. In signal processing there
are three ways to improve signal-to-noise ratio: amplification,

improved filtering, and modified gain control. Similar principles
of contrast gain, retuning of cellular signal selectivity, and reduced
contrast gain have also been demonstrated in single-unit neuro-
physiology (21). Motivated by the principles in signal processing
and neurophysiology, Lu and Dosher (22) developed a theoretical
framework based on the PTM to distinguish three mechanisms
underlying performance improvements (22). Stimulus enhance-
ment acts by multiplying the contrast of the input stimulus by a
factor greater than 1, which is mathematically equivalent to inter-
nal additive noise reduction. The behavioral signature for this
mechanism is performance improvement (reduced thresholds)
in the region of low to zero external noise (Fig. S2B). Because
it affects both the signal and the external noise in the input stimulus
in the same way, this mechanism does not affect performance in
high external noise conditions. External noise exclusion improves
performance by focusing perceptual analysis on the appropriate
temporal duration, spatial region, and/or content characteristics
of the signal stimulus. This focus serves to eliminate/admit ex-
ternal noise from further processing. The behavioral signature
for this mechanism is performance improvements in the region
of high external noise (Fig. S2C). Internal multiplicative noise
reduction reduces a noise source that is proportional to the energy
in the input stimulus. The mechanism produces a behavioral sig-
nature of performance improvements in both high and low levels
of external noise (Fig. S2D). Improved perceptual template, or
what has been termed reweighting, results in a combination of
reduced additive internal noise and improved external noise ex-
clusion. This also has the behavioral signature of performance im-
provements in both high and low levels of external noise. It
corresponds to the use of a more closely matched filter to the
signal (Fig. S2). Finally, measuring TvC functions at two or
more criterion performance levels makes it possible to resolve
the individual contribution of each mechanism in situations
where more than one mechanism may be operative (23).
In the PTM, performance improvements across groups, or time,

are respectively modeled by multiplying Na by a factor Aa < 1:0 for
better stimulus enhancement, Next by a factor Af < 1:0 for better
external noise exclusion, and Nm by factor Am < 1:0 for reduced
internal multiplicative noise. If all three mechanisms are op-
erative, the contrast threshold vs. external noise function for a
PTM becomes
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where ct denotes the predicted contrast threshold, Next is the SD
of external noises, d′ is the perceptual sensitivity of the observer,
corresponding to the thresholds in the two-alternative forced-
choice task. Note that both reduced internal multiplicative noise
and better perceptual templates predict a downward shift of the
whole function. However, as shown in Dosher and Lu (23),
whereas a perceptual template change predicts a ratio of con-
trast threshold between the compared conditions to be similar
across performance levels (79.37% and 70.71% accuracy), a re-
duction in multiplicative noise predicts a greater ratio at the
more stringent performance level (79.37%).
The external noise approach has been used to characterize

mechanisms of performance improvements and decrements in
a wide range of applications, including attention (22, 24), per-
ceptual learning (25–29), adaptation (30), amblyopia (31, 32),
perceptual interaction (33), dyslexia (34), and visual memory
(35). In many cases, a pure mechanism of stimulus enhancement/
diminution or external noise exclusion/admittance has been identi-
fied, with mixtures of these two mechanisms also being observed in
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some instances. The internal multiplicative noise reduction/increase
mechanism has not been found empirically.

SI Note 3: Data Analysis
Experiment 1: Performance in External Noise in AVGPs. An omnibus
2*2*8*2 ANOVA was performed with action game experience
(AVGP/NVGP) as a between-subject factor; run (first/second),
external noise level (eight levels), and performance level (79.37%
and 70.71%) as within-subject factors; and log signal contrast
threshold as the dependent variable. As expected, significant
effects of external noise level [F(7,126) = 260.41, P < 0.001, η2 =
0.94] and performance level [F(1,18) = 284.07, P < 0.001, η2 =
0.94] were observed, indicating lower signal contrast thresholds
at low external noise levels and at the easier performance cri-
terion level. No main effect of runs was observed [F(1,18) = 1.82,
P = 0.19, η2 = 0.09], nor did run interact with any other variable
(all P > 0.05). Importantly, AVGPs showed overall lower con-
trast thresholds than NVGPs [F(1,18) = 5.82, P < 0.05, η2 =
0.24], indicating better performance in that group (Fig. 1B in the
main text). No other significant effect or interaction was ob-
served (all P > 0.05).
Fitting the PTM. Signal contrast thresholds across the eight external
noise levels and two performance levels, for both AVGPs and
NVGPs, were fit with the PTM to derive TvC curves for both
groups (see ref. 19 for a review describing the PTM model and
refs. 22 and 25 for studies describing the use of PTM models in
capturing the mechanisms underlying performance changes ow-
ing to training or attention). In the PTM, performance im-
provements can be attributed to one or more of three noise
reduction mechanisms: improved external noise exclusion, im-
proved internal additive noise reduction, and improved internal
multiplicative noise reduction. As discussed in SI Note 2 above,
the signature of an improved perceptual template is a combina-
tion of reduced internal additive noise and improved external
noise exclusion, with the ratio of contrast thresholds between the
conditions under consideration being similar across performance
levels (that is, across the 79.37% and 70.71% accuracy levels in
our study).
We compared the results obtained by fitting eight models,

ranging from no change in any of the three noise-reduction
mechanisms in AVGPs to the full model with changes in all three
noise-reduction mechanisms in AVGPs. As discussed above, the
full model then consists of four shared parameters (β, Nm, Na,
and γ) across the two groups and three AVGP-specific noise
parameters Af , Aa, and Am. To find the best-fitting model, we
compare nested models in a model lattice. The comparisons are
not strictly independent. The logic is the same as in stepwise
regression, where comparing models with more and more re-
gressors is not considered as involving independent comparisons.
The model with the least number of parameters that was still
statistically equivalent to the model in which all changes were
allowed was considered to be the best-fitting model (see ref. 3.
for a similar approach). Model fitting was carried out using
a least-square method, and an F test over nested models was
used to compare the different models. Formally, the F test can
be described as

F
�
df1; df2

�
=
h�

r2full − r2reduced
�.

df1
i.h�

1− r2full
�.

df2
i
;

where df1 = kfull − kreduced, and df2 =N − kfull. N is the number of
predicted data points (i.e., 32 eight external noise levels × two
levels of performance × two groups) and ks is the number of
parameters in each model.
The best-fitting model was the model with a combination of

increased additive internal noise reduction and improved external
noise exclusion in AVGPs. This model has six parameters, four
shared between AVGPs and NVGPs (β, Nm, Na, and γ values),

and two AVGP-specific noise values, Af and Aa. With six pa-
rameters and r2 = 98.89%, this reduced model was statistically
equivalent to the full model with all noise parameters changed [F
(1,25) = 0.00, P = 0.99] and was significantly better than the
model with no noise parameters changed [F(2,26) = 69.92, P <
0.01], the model with external noise exclusion only [F(1,26) =
41.69, P < 0.001], and the model with internal additive noise
reduction only [F(1,26) = 54.81, P < 0.001]. The results of the
model fitting are plotted in Fig. 1B of the main text (fit lines). In
addition, the model with only a multiplicative noise change
provided a significantly worse fit (r2 = 98.03%) than the full
model [F(2,25) = 9.68, P < 0.001]. Because multiplicative noise
reduction predicts a larger improvement at the 79.37% than at
the 70.71% accuracy level, but an improved perceptual template
does not, we computed the ratios of contrast thresholds at each
accuracy level (23). Crucially, the ratios of contrast thresholds
between AVGPs and NVGPs were not significantly different at
the two performance levels: 1.26 ± 0.03 at 79.37% correct vs.
1.22 ± 0.02 at 70.71% correct. These results make multiplicative
noise change an unlikely mechanism underlying the improve-
ments in AVGPs (23) and instead support the improved per-
ceptual template as the mechanism underlying the performance
differences between the two groups.

Experiment 2: Performance in External Noise After Action Video
Game Training.
Orientation identification task. A 2*2*2*8*2 ANOVA was performed
with group (action/control) as a between-subject factor; test (pre/
post), run (first/second), external noise level (eight levels), and
performance level (79.37% and 70.71%) as within-subject factors;
and log signal contrast threshold as the dependent variable. No
main effect of run was observed [F(1,24) = 1.41, P = 0.25, η2 =
0.06], nor did run interact with any other factor (all P > 0.05).
Main effects of external noise level [F(7,168) = 414.22, P < 0.001,
η2 = 0.95], performance level [F(1,24) = 297.34, P < 0.001, η2 =
0.93], and test [F(1,24) = 15.65, P < 0.001, η2 = 0.40] were ob-
served, indicating the expected effects of lower thresholds at low
external noise levels and for the less demanding performance
level, as well as at posttest. Crucially, a test (pre/post) × group
(action/control) interaction was found [F(1,24) = 8.66, P < 0.01,
η2 = 0.27], indicating larger improvement in contrast thresholds
between pre- and posttest in action trainees than in control
trainees. Finally, a weak group × external noise level interaction
[F(7,168) = 2.35, P < 0.05, η2 = 0.09] indicated an overall ad-
vantage throughout the whole experiment in the action group
at low external noise levels. No other effects were observed
(all P > 0.05).
The significant test × group interaction led us to separately

analyze action and control trainees’ performance in the task. For
each group, a 2*2*8*2 ANOVA was performed with test (pre/
post), run (first/second), external noise level (eight levels), and
performance level (79.37% and 70.71%) as within-subject factors
and log signal contrast threshold as the dependent variable. For
control trainees there was no effect of run [F(1,13) = 0.23, P =
0.64, η2 = 0.02], nor did this factor interact with any other (all
P > 0.1). Main effects of external noise level [F(7,91) = 184.50,
P < 0.001, η2 = 0.93] and performance level [F(1,13) = 149.90, P <
0.001, η2 = 0.92] were observed. No other interactions were sig-
nificant (all P > 0.3). Importantly, there was no effect of test (see
Fig. 2B in the main text), indicating no reliable change in perfor-
mance from pre- to posttest [F(1,13) = 0.57, P = 0.46, η2 = 0.04].
For the action group, there was no effect of run [F(1,11) = 1.83,

P = 0.20, η2 = 0.14], nor did this factor interact with any other
factor (all P > 0.1). Main effects of external noise level [F(7,77) =
237.11, P < 0.001, η2 = 0.96] and performance level [F(1,11) =
165.61, P < 0.001, η2 = 0.94] were observed. Crucially, a main
effect of test was observed (see Fig. 2A in the main text), re-
flecting a lower signal contrast threshold and therefore improved
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performance at posttest relative to pretest [F(1,11) = 21.46, P <
0.001, η2 = 0.66]. The effect of test marginally interacted with
performance level [F(1,11) = 5.12, P = 0.045, η2 = 0.32], in-
dicating a different magnitude of improvement at the two levels
of task performance with greater improvement at the hardest
level. No other effect was observed (all P > 0.1).
Fitting the PTM. Signal contrast thresholds in both pretest and
posttest, across the eight external noise levels and two perfor-
mance levels, for the control and action groups were then fitted
with the PTM. The lack of difference between control and action
groups at pretest [F(1,24) = 0.01, P = 0.93, η2 = 0.00] led us to
constrain β, Nm, Na, and γ (a subset of PTM parameters) to be
the same across the two groups. Control and action groups’ data
in both pre- and posttests were then fitted simultaneously forcing
the same β, Nm, Na, and γ parameters but allowing changes in
the three noise-reduction mechanisms separately for each group,
to capture the impact of the type of game training. This gener-
ated 64 models that range from changes in all three noise-
reduction mechanisms for both groups to no change in noise
reduction in either group. The model with the smallest number
of parameters changed that was still statistically equivalent to
a model with all parameters changed was defined as the best
model fit. The model that assumed increased internal additive
noise reduction and improved external noise exclusion in the
action group, and no change in noise reduction in the control
group, after training, provided the best fit. With six parameters
and r2 = 98.60%, this model is statistically equivalent to the most
saturated model with all noise parameters changed [F(4,54) =
1.50, P = 0.22] and is significantly better than the model with no
change in noise parameters [F(2,58) = 108.54, P < 0.001], the
model with external noise exclusion only [F(1,58) = 120.14, P <
0.001], and the model with internal noise reduction only [F(1,58) =
44.33, P < 0.001]. In addition, the model with only multiplicative
noise change provided a significantly worse fit (r2 = 97.90%)
than the full model [F(5,54) = 7.20, P < 0.001]. Results from
these model comparisons therefore support improved perceptual
templates in action video game trainees, rather than an alter-
native explanation such as a change in multiplicative noise. In-
deed, a change in multiplicative noise predicts greater pre- to
posttraining contrast threshold ratio at the 79.37% performance
level than at the 70.71% performance level. This was not reliably
observed in our data (1.35 ± 0.04 at 79.37% correct vs. 1.25 ±
0.03 at 70.71% correct), thereby further reinforcing improved
perceptual templates as the most likely mechanism underlying
improved performance of action trainees. The results of the
model fitting are plotted in Fig. 2 of the main text (fit lines).
Game training results. To quantitatively assess how participants
improved their game play as a result of training, several measures
were used.
For the action games, kills and deaths in each block were used

to calculate a skill metric S = ([Kills – Deaths]/[Kills + Deaths]).
The S score was measured at all six levels of difficulty at pre-
training, after 25 gaming hours (after Unreal Tournament train-
ing) and posttraining (hours 49 and 50 of game training). As with
the control game, we compared pre- and posttraining S scores.
The S scores at all of the difficulty levels increased from 0.65
(level 1), 0.58 (level 2), 0.35 (level 3), −0.07 (level 4), −0.45
(level 5), and −0.61 (level 6) to 0.94 (level 1), 0.84 (level 2), 0.75
(level 3), 0.42 (level 4), 0.08 (level 5), and −0.11 (level 6). In-
creases were observed for all participants and at all levels of dif-
ficulty, indicating generally improved performance with training.
For the control games, money accumulated was a reliable

measure because it increases with positive actions such as making
good recipes or adding a member to the household and decreases
with negative actions such as burning down one’s restaurant or
having a character die due to neglect. All participants showed an
accelerating increase in accumulated wealth over the course of
training, indicating an improvement in game performance with

training. The time course of the accumulation was well fit by a
linear function: For The Sims2, wealth = (4,919 * training hour) +
110, r2 = 98.05%; for Restaurant Empire, wealth = (30,757 *
training hour) − 6,020, r2 = 96.23%. Taken together, these results
demonstrate that both groups showed improvement in their re-
spective training tasks.
In addition, it is worth noting that the control group trainees

managed an average of three different characters during their first
25 h of training and an average of four different restaurants
during their second 25 h of training. Thus, the control-group
trainees played/managed on average 3.5 times as many characters/
restaurants, had more variable goals, and were exposed to more
diversity in their environment than the action-group trainees. We
chose to keep the action game trainees at a disadvantage for these
factors to ensure that the amount of stimulating situations en-
countered could not easily explain any improvements in the action
group, beyond what is seen with the control group.
Flow measure. To investigate whether action and control games
were similarly engaging, flow scores at hours 20 (toward the end of
game 1) and 50 (after game 2) were compared across action and
control groups (Fig. S3). On average, participants in both groups
showed a high degree of engagement (the higher the flow, the
greater the engagement) with their assigned games. A 2*2 ANOVA
was performed with group (action/control) as a between-subject
factor, order (first/second) as a within-subject factor, and flow
score as the dependent variable. Although the mean flow score
was slightly larger for the control trainees than for the action
trainees, we found no significant effect of group [F(1,24) =
2.32, P = 0.16, η2 = 0.08] or order [F(1,24) = 0.38, P = 0.54, η2 =
0.02], nor did we find a significant group × test order interaction
[F(1,24) = 0.12, P = 0.73, η2 = 0.01]. Thus, better performance in
the action-trained group cannot be attributed to greater en-
gagement with their assigned game.

Evaluating Long-Term Retention of Action-Trained Improvements in
Performance.
Orientation identification task.A 2*2*2*8*2 ANOVA was performed
using the pretest and post2-test data for the subset of partic-
ipants that were brought back to the laboratory, with group
(action/control) as a between-subject factor; test (pre/post2), run
(first/second), external noise level (eight levels), and performance
level (79.37% and 70.71%) as within-subject factors; and log
signal contrast threshold as the dependent variable. Main effects
of test [F(1,14) = 24.06, P < 0.001, η2 = 0.63], performance level
[F(1,14) = 257.47, P < 0.001, η2 = 0.95], and external noise level
[F(7,98) = 318.19, P < 0.001, η2 = 0.96] were observed and, more
relevant to our aim, a marginally significant interaction between
pre/post2 and group [F(1,14) = 3.25, P = 0.09, η2 = 0.19] was
noted. In addition, we also noted an interaction between per-
formance level and external noise level [F(7,98) = 2.47, P < 0.05,
η2 = 0.15], indicating a greater difference in contrast thresholds
between the two performance levels at low than at high external
noise levels, and an interaction between external noise level and
group [F(7,98) = 3.51, P < 0.01, η2 = 0.20]. Across all test ses-
sions the action group showed lower contrast thresholds at low
external noise levels than the control group, but no difference
between the two groups was noted at high external noise levels.
Finally, unlike any of the previous results, run was seen to in-
teract with several factors, leading to triple and quadruple in-
teractions (all P at 0.05 level), which are difficult to interpret.
Because the pre/post2 × group interaction was only marginally

significant [F(1,14) = 3.25, P = 0.09, η2 = 0.19], we confirmed the
presence of a test effect within the action group. A 2*2*8*2
ANOVA using the pretest and post2-test data for the subset of
action group participants that were brought back to the labora-
tory, with test (pre/post2), run (first/second), external noise level
(eight levels), and performance level (79.37% and 70.71%) as
within-subject factors and log signal contrast threshold as the
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dependent variable, confirmed a main effect of test [F(1,8) =
21.64, P < 0.01, η2 = 0.73; see Fig. 3 in the main text], indicating
that the action video game-induced improvements in perfor-
mance were retained several months after training. As expected,
main effects of external noise level [F(7,56) = 178.85, P < 0.001,
η2 = 0.96] and performance level [F(1,8) = 105.58, P < 0.001,
η2 = 0.93] were also observed, indicating lower thresholds at low
external noise levels and for the less-demanding performance
level, as expected. No other main effect or interactions were
significant (all P > 0.3). To better characterize performance im-
provements of action trainees across the different tests, we fur-
ther examined how their performance changed between posttest
(immediately after training) and post2-test (several months after
the end of training) compared with between pre- and posttest
(immediately before and after training). Because a smaller group
of subjects participated in post2 compared with the initial pre/
post tests (experiment 2, discussed above), 2*2*8*2 ANOVAs
were again performed with tests (pre/post or post/post2) as
a between-subject factor; run (first/second), external noise level
(eight levels), and performance level (79.37% and 70.71%) as
within-subject factors; and log signal contrast threshold as the
dependent variable, for the subset of action trainees that were
brought back to the laboratory. We confirmed that even with this
restricted group of participants the main effect of test was sig-
nificant between pre- and posttest [F(1,8) = 20.47, P < 0.01, η2 =
0.72], but it was not between post- and post2-test [F(1,8) = 0.24,
P = 0.64, η2 = 0.03], thereby suggesting that the observed im-
provements of action returnees in post2 most likely occurred
while they trained on the action game, and that these improve-
ments were retained after the end of training, between post- and
post 2-test.
For completeness, we report the 2*2*8*2 ANOVA, with pre-

and post2-test data, performed on the subset of control-trained
participants that were brought back to the laboratory. The main
effect of test (pre/post2) was almost significant [F(1,6) = 5.71,
P = 0.054, η2 = 0.49; see Fig. S4], owing mainly to an improve-
ment from pretest to post2 at low levels of external noise, an
effect that was not noted between pre- and posttest in the larger
sample of control-trained participants. Main effects of external
noise level [F(7,42) = 162.85, P < 0.001, η2 = 0.96] and perfor-
mance level [F(1,6) = 226.05, P < 0.001, η2 = 0.97] were also
observed. Unlike any of the previous results, run was seen to
interact with several factors (all P = 0.05), with the meaning of
such interaction remaining difficult to interpret. As we did for
action trainees, pre- and posttest changes were explored sepa-
rately from post- and post2-test changes in the small group of
control trainees that returned for post2-test. The same 2*2*8*2
ANOVAs as performed with the action group trainees above
showed no significant test effect between pre- and posttest [F
(1,6) = 0.42, P = 0.54, η2 = 0.07] and showed a marginally sig-
nificant effect between post- and post2-test [F(1,6) = 3.89, P =
0.10, η2 = 0.07]. Thus, the improvements in low noise observed in
control returnees at post2 most likely occurred between post and
post2-test, with performance remaining stable between pre- and
posttest. Why performance improved at low noise levels between
posttest and post2-test remains unclear because all subjects re-
ported having stopped playing video games after the end of their
training.
Fitting the PTM.The data from the control and the action returnees
at pretest and post2-test was fitted with the PTM model. Action
and control returnees showed a significant noise × group in-
teraction [F(7,98) = 2.40, P < 0.05, η2 = 0.15] in their pretest
data, suggesting different patterns of pretest performance in the
subset of participants that were brought back to the laboratory.
This fact, combined with the very different pattern of changes
across pre-, post-, and post2-test in each group of returnees led
us to fit each group’s data separately by keeping the β, Nm, Na,
and γ parameters (a subset of PTM parameters; see ref. 3) for

each group constant from pre- to post2-test and considering the
full range of models, from no change in noise reduction in either
group in post2 to a change in all three noise parameters in post2.
The procedure for model fitting and selection was identical to
that described above. The model-fitting results for the action
group are plotted in Fig. 3 of the main text (fit lines) and the
results for the control group are plotted in Fig. S4 (fit lines).
For the action group, the model that assumes improvements in

internal additive noise reduction and external noise exclusion at
post2 provided the best fit. Specifically, in comparison with the
pretest, the best-fitting model assumed a 17% improvement in
external noise exclusion and a 28% increase in internal noise
reduction in post2. With six parameters and r2 = 99.25%, this
model is statistically equivalent to the most saturated model with
all noise parameters changed [F(1,25) = 0.34, P = 0.57] and is
significantly better than the model with no change in noise pa-
rameters [F(2,26) = 97.07, P < 0.001], the model with external
noise exclusion only [F(1,26) = 99.15, P < 0.001], and the model
with internal noise reduction only [F(1,26) = 38.83, P < 0.001].
The model with only a multiplicative noise change (r2 = 98.26%)
provided a significantly worse fit than the most saturated model
[F(2,25) = 16.89, P < 0.001]. These model comparison results
help reject a multiplicative noise change explanation and are in
accordance with the finding of comparable contrast ratio at
79.37% performance level (1.32 ± 0.04) and at 70.71% perfor-
mance level (1.29 ± 0.04). Together, as in experiments 1 and 2,
these results support improved perceptual templates as the most
likely mechanism underlying the observed improvements in ac-
tion trainees and show that this improvement is maintained for
several months after the end of training.
For the control group, the model that assumes an improvement

in internal additive noise reduction at post2 provided the best fit.
Specifically, in comparison with the pretest, the best-fitting model
assumed a 19% improvement in internal noise reduction in post2,
with no change in external noise exclusion. With five parameters
and r2 = 97.86%, this model is statistically equivalent to the most
saturated model with all noise parameters changed [F(2,25) =
0.36, P = 0.70] and is significantly better than the model with no
change in noise parameters [F(1,27) = 24.60, P < 0.001] and fits
the data better than the model that assumes improvement in
external noise exclusion alone (r2 = 96.38% < r2 = 97.86% of
best-fitting model). Moreover, the model with only a multiplica-
tive noise change (r2 = 97.19%) provided a significantly worse fit
than the most saturated model [F(2,25) = 4.39, P < 0.05], pro-
viding no support for the multiplicative noise model. Indeed, we
did not observe a greater contrast ratio at the 79.37% perfor-
mance level (1.14 ± 0.04) than at the 70.71% performance level
(1.16 ± 0.04), as predicted by the multiplicative noise model.
Improved internal noise reduction is the most likely mechanism
underlying the improvements observed in the control group
trainees at post2-test. It remains unclear why we observe internal
noise reduction between the end of training and retest at post2 in
controls trainees, whereas in action trainees we see performance
changes only during the training period and these changes are
best accounted for by a change in perceptual template.

Experiment 3: Dynamics of Perceptual Template Learning in AVGPs.
Orientation identification learning task. A 2*8 ANOVA was per-
formed on the contrast thresholds across the eight sessions, with
group (AVGPs/NVGPs) as a between-subject factor and session
(1–8) as within-subject factor. Main effects of session [F(7,126) =
13.42, P < 0.001, η2 = 0.427] and group [F(1,18) = 7.54, P < 0.05,
η2 = 0.295] indicated significant learning effects on this orien-
tation identification task and generally lower contrast thresholds
in AVGPs compared with NVGPs. Most importantly, a signifi-
cant interaction between session and group indicated that the
two groups differed across learning sessions [F(7,126) = 3.16,
P < 0.01, η2 = 0.149]. Post hoc tests confirmed comparable
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performance across the two groups in the first session [F(1,18) =
0.05, P = 0.825, η2 = 0.003; Fig. S5] but lower signal thresholds in
AVGPs in subsequent learning sessions (all P < 0.05; all P cor-
rected for multiple comparison with the Sidak correction).
Fitting the elaborated power function. Contrast thresholds across the
eight learning sessions were fit with an elaborated power function
c(t) with three free parameters: (i) α, baseline contrast; (ii) λ,
incremental threshold; and (iii) ρ, learning rate. Formally, the
power function can be written as

cðtÞ= λðtÞ−ρ + α;

where t is the learning session. For the two groups of subjects, the
complete model has six parameters (one λ, ρ, and α per group).
The model that postulates no change between the two groups has
three parameters (λ, ρ, and α), because it assumes that λ, ρ, and α
are the same across the two groups. Between the fully saturated
model and the no-change model, a lattice of models with different
numbers of parameters was explored. Similar to the PTM fitting
procedure, goodness of fit was measured by the r2 statistic, and
a model lattice consisting of eight models, ranging from the no-
change model to the fully saturated model, was used to select the
best-fitting model based on the following F test:

F
�
df1; df2

�
=
h�

r2full − r2reduced
�.

df1
i.h�

1− r2full
�.

df2
i
:

The model that had the smallest number of parameters and was
statistically equivalent to the complete model was defined as the
best-fitting model (9). The number of predicted data points in
this case was 16 (2 groups × 8 time points).
The model that assumed that only the learning rate ρ differed

between the two groups provided the best fit. With four pa-
rameters and r2 = 97.45%, this model is statistically equivalent to
the full model [F(2,10) = 0.54, P = 0.60] and is significantly
better than the model with no change between groups [F(1,12) =
297.27, P < 0.001]. Furthermore, it fits the data better than
the model that assumes only baseline contrast α changes (r2 =
86.97% < r2 = 97.45% of best-fitting model), as well as the
model that assumes only incremental threshold λ changes (r2 =
90.73% < r2 = 97.45% of the best-fitting model).

SI Note 4: Neural Model
We adapted a recent probabilistic neural model of orientation
selectivity (36) to our task and asked which type of network
changes could best explain the performance improvements ob-
served as a result of action video game training.

Stimulus Design. Network simulations were run using stimuli
similar to those used in our behavioral experiments (described
above). Each stimulus image included an oriented Gabor signal
that was tilted ±2° around the horizontal reference, and was
created by assigning grayscale values to image pixels, according
to the following function:

Z
�
x; y
�
= z0 p

�
1:0+ c cos

�
2πf
�
x cos

�
θ
�
+ y sin

�
θ
���

p exp
�
−
�
x2 + y2

��
2σ2
��
;

where θ= radð0°± 2Þ, z0 is the background grayscale value, f = 2
cycles/degree is the center spatial frequency of the Gabor signal,
σ = 0.375° is the SD of the Gabor’s circular Gaussian envelope,
and c is the maximum contrast of the Gabor signal, as a propor-
tion of the maximum achievable contrast. The Gabor signal ex-
tended over 2.3 × 2.3° of visual angle and was rendered on a 23 ×
23 pixel grid. In addition, as in ref. 36, each stimulus image was
padded with extra pixels (10 pixels at each end), set to the back-
ground value, to eliminate possible edge effects.

Pixel gray levels for the external noise were drawn from a
Gaussian distribution with mean zero and SD depending on the
experimental condition. As in our behavioral experiments, we used
eight levels of external noise in which the SD of the distribution was
varied as a proportion of the maximum achievable contrast. The
effective noise contrast levels used were 0.005, 2.1, 4.1, 8.3, 12.4,
16.5, 24.8, and 33%. Each noise element included a single pixel and
the noise gray level values were added to the stimulus gray level
values on a pixel-by-pixel basis to generate the noise-injected image.

Network Model of Orientation Selectivity.
Network architecture. For a complete description of the network
architecture and the response properties of units in each stage of the
network, the reader is referred to Bejjanki et al. (36). There are two
points to note regarding the current implementation. First, the
behavioral task used here differed from the task simulated pre-
viously by Bejjanki et al. (36) in two major ways: (i) The Gabor
patch appeared in central vision rather than in peripheral vision
and (ii) the Gabor orientation and tilt to identify were different. As
such, in adapting the model to the current task, some baseline
network parameters were changed so as to match network per-
formance to the pretest performance of our behavioral partic-
ipants. These parameters were then fixed and the minimal number
of parameter changes necessary to capture the action video game-
induced improvements in behavior was explored. All relevant pa-
rameters and their values are described in the following sections.
Second, a note of caution is necessary about the hypothesized
neural locus of action game-induced improvements in human
participants. Although we show that the behavioral improvements
observed as a result of action video game experience can be cap-
tured in our neural implementation by changing the pattern of
thalamo-cortical feed-forward connections, we do not intend to
claim that this is the specific neural locus of action game-in-
duced improvements in human participants. Rather, as de-
scribed in the main text, our intent here is to show using
a biologically realistic neural model of orientation selectivity that
improving the quality of the inference during the processing of
perceptual information results in improved behavioral perfor-
mance, in line with the improvements observed as a result of action
game training. Ultimately, the precise neural locus of action game-
induced improvements in performance is likely to depend on the
specific task used, the sensory modalities involved, and the nature
of feedback and training received by gamers. Irrespective of the
precise locus of the changes, however, we argue that playing action
video games leads to improved performance by changing the
pattern of feed-forward connections between neural layers so as to
instantiate improved probabilistic inference.
Visual stage 1.As in Bejjanki et al. (36), the input layer consists of an
array of ON center-surround cells and an array of OFF center-
surround cells, each of which contains 529 units arranged in a 23 ×
23 grid. The firing rate of a cell at location (x, y) is given by

rONðx; yÞ=G½rbaseline + rcenterðx; yÞ− rsurroundðx; yÞ�
rOFFðx; yÞ=G½rbaseline − rcenterðx; yÞ+ rsurroundðx; yÞ�;

where with α ={center, surround},

rα
�
x; y
�
= q
�
c
�
Kα

 Zw2
−w2

1ffiffiffiffiffiffiffiffiffiffi
2πσ2α

p e
− ðx− x′Þ2

2σ2α dx′

! Z l
2

− l
2

1ffiffiffiffiffiffiffiffiffiffi
2πσ2α

p e
− ðy− y′Þ2

2σ2α dy′

!
:

The new parameters used were σcenter = 0.12°, σsurround = 0.5°,
Kcenter = 18, Ksurround = 21, rbaseline = 15 Hz, and q(c) is given by
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qðcÞ=
 
β½logðcÞ�2

c

!
  with β= 0:1:

Visual stage 2. The stage 2 layer contains 1,024 neurons, which as in
Bejjanki et al. (36) aremodeled asLNPunits. Specifically, each stage
2 cell is modeled as a single point process and the input–output re-
lationship in the cell is composed of three distinct operations: (i)
a linear step where the input spike trains, both feed-forward and
recurrent, are linearly combined to obtain a “membrane potential
proxy,” (ii) a nonlinear step where the membrane potential proxy is
passed through a static nonlinearity to generate the instantaneous
probability that it emits a spike, and (iii) a Poisson step where the
instantaneous spike probability is used to generate Poisson spikes.
These spikes are in turn transmitted to all of the other stage 2 cells
through lateral connections, thereby influencing the postsynaptic
cells’membrane potential proxies at the next time step.
As in Bejjanki et al. (36), we model the receptive field of each

cell in visual stage 2, with respect to visual stage 1, using a Gabor
function gabðx; y; θÞ defined as

gabðx; y; θÞ= e
−

	
C2x
2σ2x

+
C2y
2σ2y



cos
�
2πkCx

�
;

where

Cx = x cos θ+ y sin θ
Cy = y cos θ− x sin θ:

The strength of each connection was set to α * j gabðx; y; θÞj2.
The new baseline parameters used were σx = 0:25;   σy = 0:3;
k= 1:45;   and  α= 0:55.
As in Bejjanki et al. (36), we implement full lateral connectivity

with the strength of the connection between two cells x and y,
with preferred orientations Px and Py (in radians), given by

W
�
x; y
�
=

Gw

Nout

h
eKeðcosðPy−PxÞ−1Þ −AieKiðcosðPy−PxÞ−1Þi+DCw:

The new baseline parameters used were Ke = 0.5, Ki = 0.25,DCw =
−2.0, Gw = 1, and Ai = 0.4.
Decision stage. The final stage of the network involves connections
from all stage 2 cells to a single decision unit that outputs an
estimate for the orientation of the stimulus (clockwise or counter
clockwise around horizontal, for example). As in Bejjanki et al.
(36), we used a linear classifier as the decoder in our network,
which was optimized for the before-training network condition
and then kept constant across all network manipulations.

Computing Orientation Discrimination Performance and Deriving TvC
Curves. As in Bejjanki et al. (36), we compute the orientation
discrimination performance of our network, when presented
with the noisy oriented Gabor stimuli (described above), by es-
timating Fisher information, an information-theoretic quantity
that directly predicts performance in discriminations tasks. Re-

cently, we have derived an analytic expression for the linear
Fisher information in a population of LNP neurons driven to
a noise-perturbed steady state, with network properties similar to
those of the network used here (37). Linear Fisher information is
the fraction of Fisher information that can be recovered by
a locally optimal linear estimator—in practice, it has been found
to provide a tight bound on total Fisher information, both in
simulations (38) and in vivo (39). This expression, when applied
to a network with a fixed decoder, can be written as

IðWdecÞ=
�
WT

decμ′
�2

WT
decΓWdec

;

where

μ′=
�
D−1 −W

�−1Mh′
Γ=

�
D−1 −W

�−1T�MΓhhMT +D−1GD−1
�D−1 −W
�−1

:

Wdec represents the fixed pattern of connection weights from
stage 2 to the decision stage, W represents the matrix of stage
2 recurrent connections, M represents the matrix of stage 1 –

stage 2 feed-forward connections, h represents the mean input
firing rates from stage 1, Γhh represents the covariance matrix of
the input firing rates from stage 1, G is a diagonal matrix whose
entries give the mean response of the LNP neurons, obtained
from the nonlinear function that transforms the membrane po-
tential proxy u(t) to the firing rate for the LNP neurons, and D is
a diagonal matrix that gives the derivative or slope of the acti-
vation function G of the stage 2 neurons at steady state.
Using the above expression allows us to compute the Fisher

information, and hence the discrimination threshold, at the decision
stage in response to a given stimulus. We compute Fisher in-
formation at the decision stage using stimuli with 17 signal contrast
levels (10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80,
and 90%) and with the eight levels of external noise used in our
behavioral experiments. We then derive network TvC curves by
computing an iso-information contour for a value of information
that is equivalent to the percent correct criterion used in the behav-
ioral experiments (computed via signal detection theory), through
the resulting information matrix (see ref. 13 for further details). We
can now examine the influence of changes in network parameters
on these network TvC curves in an effort to model the neural basis
for the action-trained improvements in performance.

Modeling Action-Trained Improvements in Performance.As discussed
in the main text (Fig. 4), action video game-induced changes in
performance were captured in ourmodel bymaking changes only to
the feed-forward connectivity between stage 1 and stage 2. A change
in this single network parameter led to a decrease in network signal
contrast thresholds and a nearly uniform downward shift in network
TvC curves (Fig. 4B), similar to those observed in our behavioral
experiments. The specific network parameter values that led to the
reported results are listed in Table S1.
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Fig. S1. The external noise method. (A) From left to right, external noise images with increasing contrast. (B) A signal Gabor patch embedded in increasing
levels of external noise. (C) The signal contrast required to maintain threshold performance at three criterion performance levels as functions of external noise
contrast.
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Fig. S2. The PTM. (A) A schematic of the components included in the PTM. (B–D) Behavioral signatures of three mechanisms of performance improvements
and decrements.
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Fig. S3. Flow measures. Mean ‟flow” scores computed for the action (n = 12) and control (n = 14) groups, after 20 h (toward the end of game 1) and 50 h
(after game 2) of game training. Participants in both groups displayed high flow scores, and although the control trainees tended to exhibit greater flow, this
difference was not statistically significant (P = 0.16).
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TvC Functions of Control Group Returnees (n=7)
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Fig. S4. Retesting control group participants several months after training. A subset of the control group participants (n = 7) from the training study were
brought back several months after the end of training and tested again on the orientation identification task (post2). Control returnees showed a marginally
significant effect of test that seems entirely due to enhanced performance at low levels of external noise, unlike what is observed in action returnees, who
show improvements in performance across all levels of external noise (Fig. 3). Fitting the data with the PTM indicated a best-fitting model that assumes greater
internal noise reduction (by 19%) at post2 compared with pretest, but crucially no change in external noise exclusion. The internal noise reduction seen in
control returnees is difficult to interpret, but it remains that this pattern of improvement differs from the perceptual template mechanism seen in action
returnees.
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Fig. S5. Performance over time in learning sessions 1 and 2 (experiment 3). Performance was averaged every 12 trials for the 2/1 staircases and every 14 trials
for the 3/1 staircases so as to generate six data points per staircase. These were averaged across staircases and are shown here for AVGPs (n = 10) and NVGPs
(n = 10). Performance across groups was comparable during session 1, with AVGPs beginning to outperform NVGPs only by session 2 (data points connected by
curves for the purpose of illustration).

Table S1. Parameters for networks shown in Fig. 4

Simulated period σx σy k α Ke Ki DCw Gw Ai

Before training (baseline) 0.25 0.3 1.45 0.55 0.5 0.25 −2.0 1 0.4
After training 0.25 0.35 1.45 0.55 0.5 0.25 −2.0 1 0.4
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